Synthesis and Biological Activities of Organotin (IV) Carboxylates: A Review

Angham G. Hadi 1, Khudheir Jawad 1, Dina S. Ahmed 2, Emad Yousif 2*
1Department of Chemistry, College of Science, Babylon University, Babil, IRAQ.
2Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, IRAQ.

ABSTRACT
Organotin(IV) compounds have gained significant interest in both the chemical and pharmaceutical industry. Tin (IV) form stable complexes with a unique structure and physicochemical properties that are used in organic synthesis as heat stabilizers and catalysts, in drug development as biologically active agents and in other areas. This review concentrates on recent progress in the classical and convenient synthesis procedure and biological activities as antitumoral and antimicrobial agents.

Key words: Organotin(IV), Carboxylates, Stabilizers, Antitumor, Triorganotin(IV), Diorganotin(IV).

INTRODUCTION
Organotin carboxylates comprise one of the most important classes of compounds. Besides the theoretical and structural interests, organotin carboxylates are finding great importance in industry and agriculture. New applications are likely to emerge in the near future. The compounds containing – OCOR’ groups bonded to tin are defined as organotin esters which may be either monomeric or polymeric and of three general types, viz. R1SnOCOR’, R2Sn(OCOR’), and R3Sn(OCOR’), where R and R’ may be same or different groups.

SYNTHESIS OF ORGANOTIN CARBOXYLATES
Because of the hydrolysable nature of organotin halides, which are employed as starting material, their complexes have been prepared by carrying out the reactions in anhydrous organic solvent such as; n-hexane, benzene, acetone, methanol, ethanol. Hameed A. et al. prepared triorganotin (IV) complexes of the type Ph2SnL, Bu2SnL and Me2SnL of the ligand benzamidothionine (HL). The general chemical reaction for the synthesis of the triorganotin (IV) complexes are given in equation below.

\[R_3SnCl + LH \rightarrow Et_2N R_3SnL + Et_NHCl \]

From Infra-Red Spectroscopy and Nuclear Magnetic Resonance Tetrahedral geometry was proposed for the prepared complexes,1 Figure 1. Yousif E. studied the synthesis of triorganotin with benzamidoglycin. Ligand formed by reaction of benzoyl chloride with glycin presence of sodium hydroxide. The prepared complexes were characterized by elemental analysis, infrared, conductance measurements and nuclear magnetic resonance (\(^1H\), \(^13C\) and \(^119Sn\) NMR) spectral data. From the spectral measurements, monomer structures, monodentate and tetraheiral geometry Figure 2 were proposed for the complexes prepared.2 Also Yousif E. et al. studied the preparation of triorganotin complexes with benzamidoalanine, which was formed by reaction of benzoyl chloride with alanine in the presence of sodium hydroxide. The complexes were characterized by elemental analysis, conductance measurements and infrared, ultraviolet visible and \(^1H\), \(^13C\) and \(^119Sn\) nuclear magnetic resonance spectroscopy. Monomer structures were proposed from the spectral measurements Figure 3, with a bidentate form.3

Diorganotin carboxylate were prepared by refluxing of organotin derivatives and carboxylic acid. Farina et al. prepared complexes of the type R3SnL2, where R = phenyl, butyl and methyl and L = N-methyl-m-nitrobenzohydrazodic acid.4 Bidentate and Octahedral geometry was proposed for the complexes prepared Figure 4.

It may conclude that the ligand coordinated through oxygen to the Tin atom leading to the formation of five member ring chelate.5 Also new diorganotin(IV) complexes of the type Ph2SnL, Bu2SnL and Me2SnL of the ligand H benzamidoleucine(L). Ligand formed by reaction of benzoyl chloride with leucine in presence of sodium hydroxide. Octahedral geometry was proposed for the prepared complexes.6 Graisa et al. new diorganotin(IV) complexes of the type Ph2SnL, Bu2SnL, and Me2SnL, of the ligand N-tolyl m-Nitrobenzohydrazodic acid. Ligand formed by condensation reaction of 3-Nitrobenzoyl chloride with N-tolyl hydroxylamine in presence of sodium hydrogen carbonate as a catalyst. The prepared complexes were characterized by FTIR Spectroscopy, electronic spectroscopy, \(^1H\)NMR and \(^13C\)NMR. From the spectral measurements, monomer structures for the complexes were proposed. Octahedral geometry Figure 5 was proposed for the complex prepared.4 Anew diorganotin(IV) complexes of the type Ph2SnL, Bu2SnL, and Me2SnL, of the ligand H benzamidaecetic acid (L). Ligand formed by reaction of benzoyl chloride with glycin in presence of sodium hydroxide. The ligand coordinated through carboxylate to the Tin atom leading to the formation of four member ring chelate. Tetrahedral geometry Figure 6 was proposed for the prepared complexes.7

On 2010 the ligand 2-[phenylcarbonyl]amino]propanoic acid (HL) formed by reaction of benzyol chloride with alanine in presence of sodium hydroxide and a new diorganotin(IV) complexes were investigated.8 The ligand coordinated through carboxylate to the Tin atom leading to the formation of a four membered ring chelate. Octahedral geometry was proposed for the prepared complexes Figure 7.

Yousif E. et al. were studied the synthesis, characterization and fungicidal activity of some diorganotin(IV) with 2-thioacetic-5-phenyl-1,3,4-oxadiazole.9 Octahedral geometry was proposed for the prepared complexes Figure 8.

Graisa A. et al. have showed bidentate and Octahedral geometry was proposed for the complexes prepared from the ligand N-methyl-m-methoxybenzohydrazodic acid and different diorganotin(IV) oxide
Figure 1: Triorganotin(IV)- Benzamidomethionine complex.

Figure 2: Triorganotin(IV)- Benzamidovaline complex.

Figure 3: Triorganotin(IV)- Benzamidoalanine complex.

Figure 4: Diorganotin(IV)- N-methyl- m-nitrobenzohydroxamic acid complex.

Figure 5: Diorganotin(IV)- N-tolyl m-Nitrobenzohydroxamic acid complex.

Figure 6: Diorganotin(IV)- benzamidoacetic acid complex.
Najeeb D. et al. reported a new structural class of organotin compounds by synthesis of new diorganotin (IV) complexes of the ligand benza- midocysteine. The ligand formed by reaction of benzoyl chloride with cysteine in presence of sodium hydroxide. Octahedral geometry was proposed for the prepared complexes. Biological activity data have shown that these complexes have a significant biological activity against Gibberela, Cercospora arachidicola, Physolospora piricola and Fusarium oxysporum in DMF by the serial plate dilution method Figure 10.

BIOLOGICAL ACTIVITIES

The inorganic tin(IV) compounds are non-toxic or only slightly toxic towards mammals, insects, bacteria and fungi, whereas tin(IV) compounds, having an organic moiety, show varying biological activities. For alkyl organotin(IV), the longer the alkyl chain, the less toxic it is. The particular pattern for methyl, ethyl, propyl and butyl varies according to the test organism. Activity also depends on the structure of the organotin(IV) compounds. Triorganotin(IV) compounds, which are compounds that have three Sn-C bonds, have the highest cytotoxicity and compounds that contain aryl groups are less toxic than those with alkyl groups. The X group can increase activity if it is biologically active or can assist in the transportation of the compound to the site of activity and the X group can also decrease activity, if it is chelated to the tin(IV) atom. Compounds with a Sn-O linkage have been shown to have better activity than compounds that have tin(IV) connected to sulfur. For tri-n-alkyltin(IV) acetates, the methyl organotin(IV) compounds are the most active in insects and mammals while the propyl and butyl compounds are the most active in fungi and certain bacteria. Activity decreases as the number of alkyl groups decreases as follows $R_4Sn > R_3Sn > R_2Sn > RSn > Sn$ all for tin(IV) compounds with the anionic X group exerting little influence on activity. The compounds most used commercially are tributyltin(IV) chloride, dibutyltin(IV) dichloride, tributyltin(IV) oxide and dibutyltin(IV) oxide as in Figure 11 since they are among the least toxic alkyltin(IV) derivatives in humans.

Microorganisms have existed on the earth for more than 3.8 billion years and exhibit the greatest genetic and metabolic diversity. They are an essential component of the biosphere and serve an important role in the maintenance and sustainability of ecosystems, comprising about 50% of the living biomass. In order to survive, they have evolved mechanisms that enable them to respond to selective pressure exerted by various environments and competitive challenges. The disease-causing microorganisms are particularly vulnerable to man’s selfishness for survival, who has sought to deprive them of their habitat by using antimicrobial agents. These microorganisms...
BIOLOGICAL PROPERTIES OF ORGANOTIN CARBOXYLATES

Organotin compounds have received more attention for their biological effects than organic compounds of any other metal. The inorganic tin compounds hardly have any biological activity whereas organotin compounds exhibit high biocidal activity, probably due to their lipid solubility, which facilitates better transport to the reaction sites than the corresponding inorganic tin compounds. The systematic studies of biological activities of organotins were initiated in 1950.26 Van der Kerk and Luijten27 in 1954 published that many organotin derivatives having the general formula of R₃SnX are powerful fungicides. Within any R₃SnX coordination positions at Sn and (ii) the occurrence of relatively stable ligand-Sn bonds; e.g., Sn-N, Sn-S, Sn-O and their slow hydrolytic decomposition.27 The antifungal, antibacterial and antitumor activities of organotin(IV) carboxylates are essentially related to the number and nature of the organic groups attached to the central Sn atom.28 In general, triorganotin(IV) compounds display better biological activity than their diorganotin and mono organotin analogs. This has been attributed to their ability to bind proteins.29 Research on the structure of organotin(IV) carboxylates continues and, at the same time, some new applications of high importance are being discovered which are relevant to ecological medicinal applications. The increasing interest in the chemistry of organotin(IV) compounds has led to the extended studies on their reactions with different biomolecules.30 Antitumor activities of some organotin(IV) carboxylates are showed promising cytotoxic activities against various cancer cells like, sarcoma cancer cells, lungs, liver, breast and colon carcinoma etc. Antitumor activities of some of the complexes are also found to be competing with cis-platin.31-32

ANTITUMORAL ACTIVITY

Cisplatin and carboplatin Figure 12 have a wide range of applications in cancer chemotherapy. The serious negative side effects of platinum-pharmaceuticals diverted the attention of researchers to non-platinum chemotherapeutics with positive, low or no side effects.33,34 Among these organotins (IV) have received the greatest attention on account of their potential apoptotic inducing characteristics and high therapeutic index.35,36 Some complexes of organotin(IV) Figure 13 are already known to possess antitumor activity.37-39 There have been a large number of reports highlighting the use of diorganotin(IV) complexes as antitumor agents.40-45 Organotin(IV) compounds have been tested for antitumor activities as early as 1929.46 First (1963) found that chelation plays a role in both the cause and cure of malignancy.47 Since this discovery, molecules containing metal sites as chelating agents have been employed in the fight against cancer. According to Mutter et al. the structures of all organotin(IV) antitumor active compounds are characterized by (i) the availability of coordination positions at Sn and (ii) the occurrence of relatively stable ligand-Sn bonds; e.g., Sn-N, Sn-S, Sn-O and their slow hydrolytic decomposition.48-49 Thiouamide-organotin(IV) complexes, on the other hand, have shown high antitumor activity, which is rather related to the ligand type and not to the geometry of the compounds.50 Therefore, five coordinated tri-organotin(IV) complexes should exhibit higher activity.51 The anticancer activity of organotin(IV) carboxylates is reviewed recently.52 It is found that organotin(IV) geometry has role in their biological activity. It has been found that five-coordinated organotin(IV) carboxylates display strong enzyme inhibition activity as compared to six coordinated compounds. It is also found that nature and size of alkyl or aryl group attached to SnIV also play a decisive role in biological activities of organotin(IV) carboxylates.53

Hadi, et al.: Synthesis and Biological Activities of Organotin (IV) Carboxylates: A Review

Systematic Reviews in Pharmacy, Vol 10, Issue 1, Jan-Dec, 2019

29
CONCLUSION

Organotin(IV) derivatives were synthesized in quantitative yield by refluxing the synthesized carboxylic acids and respective organotin(IV) compounds in suitable solvent. The FT-IR spectral data that the organotin(IV) moieties react with the [O, O] atoms of the ligand, which behaves as bidentate. NMR data showed that the bidentate nature of carbonylate group is probably lost in solution and that the triorganotin(IV) derivatives contained four-coordinated tin with a tetrahedral arrangement, while the diorganotin(IV) derivatives exhibit penta- or hexa-coordinated geometry due to fluxional behavior. Triorganotin(IV) compounds display better biological activity than their diorganotin and mono organotin analogs. Structure-activity relationship also showed some important information such as that the organic moiety attached to Sn plays an important role and that the coordination of Sn with the ligand and that the geometry of the complex is more important in determining the cytotoxicity of the compound. Therefore, in a short time, organotin compounds can play a vital role in drug development.

ACKNOWLEDGEMENT

The project was supported by Babylon and Al-Nahrain Universities.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ABBREVIATIONS

Me: Methyl group; Bu: Butyl group; Ph: Phenyl group; NMR: Nuclear magnetic resonance; R: Organic group; Sn: Tin; L: Ligand; FTIR: Fourier Transformed Infra-Red.

REFERENCES

