A Review of Antimicrobial Resistance (AMR) of Escherichia coli on Livestock and Animal Products: Public Health Importance

Hayyun Durrotul Faridah1, Erna Kristiana Dewi2, Fatimah3, Mustofa Helmi Effendi2,4, Hani Plumeriastuti3

1 Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia
2 Department of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
3 Department of Veterinary Pathology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
4 Corresponding author: Mustofa Helmi Effendi. Department of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia. Email: mheffendi@yahoo.com

ABSTRACT
Antimicrobial resistance (AMR) has become a major challenge for the world of health in this century. This resistance event is closely related to the use of antibiotics that are used in accordance with the rules in both the hospital sector and the livestock sector. Antibiotics have an important role in treating infectious diseases. The role of antibiotics is expanding not only as a treatment but also as a promotion in livestock production. Escherichia coli has been widely used to monitor resistance in livestock and food of animal origin because these microbes can be found in the digestive tracts of warm-blooded animals. Several strains of Escherichia coli are potential sources of resistant genes that can be transmitted to humans. Livestock and food of animal origin such as poultry, pigs, cattle, sheep, eggs, and milk have become reservoirs for resistant Escherichia coli. It is not only resistant to one type of antibiotic but has also become multidrug-resistant, and also become public health problems. Escherichia coli has different resistance mechanisms depending on the type of antibiotic. This resistance mechanism is also encoded by resistance genes which can be transmitted horizontally. Resistant bacteria encode different resistance genes for each antibiotic class. There needs to be strict regulations and supervision to limit the use of antibiotics in the livestock sector so that it can reduce cases of antibiotic recession in the world.

INTRODUCTION
Antimicrobial resistance (AMR) was introduced more than fifty years ago and is the biggest challenge of this century. Resistance of pathogenic bacteria to antibiotics is one of the major public health problems of the 21st century (1). This resistance is a growing public health threat throughout the world (2). Microbes can simultaneously be resistant to several groups of antibiotics. This event is called multidrug-resistant, ie when the microbes are resistant to at least 3 types of antibiotics (3). This incident is associated with the use of antibiotics that are not according to the rules. Such as excessive use of antibiotics and errors in diagnosing diseases. Not only because of its use in humans but also on farm animals (4). The use of antibiotics is expected to continue to increase rapidly in the coming years due to the intensification of the livestock sector in many developing countries (5). Animal husbandry is one of the sectors that has the potential as a reservoir for resistant microbes (4). The use of antibiotics in animal husbandry is directly related to the cases of resistant bacteria in food of animal origin (6,7). In the poultry sector, breeders in various countries use antibiotics to raise poultry (8,9). Antibiotics are given orally to treat livestock infected with pathogenic bacteria, prevent livestock from disease, and to increase productivity (10). The indiscriminate use of antimicrobials in livestock has the opportunity to accelerate the development of resistant pathogenic microbes as well as in commensal organisms (11). Apart from concerns about the emergence of AMR in bacteria from poultry production, there are also human health concerns about the presence of antimicrobial residues in foods of animal origin such as milk (11), meat (12), and eggs (13). In addition, AMR in poultry pathogens is likely to result in economic losses. Infectious diseases in livestock that are not handled and due to the purchase of antibiotics that are not effective in treating them (14). The case of resistance to the gram-negative group of bacteria is very worrying because of the limited choice of antibiotics to treat infections caused by several organisms such as Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter which have become resistant to almost all available antimicrobials, including carbapenems (4). The Enterobacteriaceae group is a microbe that is clinically fast growing agents to become resistant to available antimicrobials (15). Cases of microbial resistance to antibiotics that are widely reported in livestock and food of animal origin include Escherichia coli. Resistant Escherichia coli was found in chickens in Ghana (16), pork and beef in Mexico (17), chicken in Pakistan (18), chicken in France (19) and chicken in Indonesia (11).

OVERVIEW
Escherichia coli
Escherichia coli is a member of the Enterobacteriaceae family in the Gammaproteobacteria class (20) which is commonly found living in human and animal digestion as normal microflora (21). Escherichia coli includes Gram negative bacteria which are facultative anaerobes (22). These bacteria are Gram-negative bacteria with short rods, measuring 2.4 x 0.4-0.7 μm, motile with peritrichous flagella, and without spores and including opportunistic pathogens which always show increased resistance to various antibiotics. These bacteria have the highest...
incidence of urinary tract infections (UTIs) (23). Escherichia coli is able to reproduce itself in approximately twenty minutes (20). Escherichia coli is one of the bacteria that has been studied in depth. Sequence analysis of the Escherichia coli genome was first reported in 1997. Since then, more than 4800 Escherichia coli genomes have been sequenced (23). Escherichia coli can replicate in every 20 minutes. This rapid growth makes it suitable for observations of the evolution of microorganisms and research on long-term experimental evolution of more than 50,000 generations (24).

Escherichia coli has been widely used to monitor AMR in livestock and food of animal origin. This is because Escherichia coli can be found in the digestive tracts of warm-blooded animals (25). In addition, several strains of Escherichia coli are potential sources of the AMR gene which can be transmitted to humans through various means (21, 22). Escherichia coli carried through feces or treatment of wastewater that is disposed of into waterways can pollute the environment (26). The concentration of Escherichia coli per gram of feces varies across host species, typically reaching 10^7–10^9 in humans and 10^4–10^6 in domestic animals (27).

VIRULENCE FACTORS OF ESCHERICHIA COIL

Escherichia coli is a normal opportunistic flora in the digestive tract, that is, if the number is within normal limits, the bacteria can be beneficial, but if there is an increase in the number from normal, the bacteria will become pathogenic (28). Pathogenic Escherichia coli can cause disease in the intestinal tract as well as outside the intestine (29). There are six intestinal pathotypes of Escherichia coli including Shiga toxin-producing Escherichia coli (STEC), enter-toxigenic Escherichia coli (ETEC), enteropathogenic Escherichia coli (EPEC), diffusely adherent Escherichia coli, and enteroinvasive Escherichia coli. These strains are classified based on their virulence properties and pathogenicity mechanisms that cause gastrointestinal diseases such as diarrhea (30, 31).

Escherichia coli is the main cause of urinary tract infections (UTIs). Apart from being infected with Escherichia coli, UTIs can also be caused by Proteus spp., Staphylococcus saprophyticus, Klebsiella spp. and other Enterobacteriaceae. However, among UTIs-causing bacteria, Escherichia coli is considered to be the most dominant cause of community and nosocomial UTI. In addition, having a history of UTI in a patient increases the chance of infection (23). Therapeutic measures for UTI treatment use several antibiotic options including cotrimoxazole (trimethoprim / sulfamethoxazole), nitrofurantoin, ciprofloxacin and ampicillin (32, 33).

However, studies of antibiotic resistance using urinary tract isolates from Escherichia coli have shown increased resistance to certain antibiotics, for example to ampicillin and cotrimoxazole (32).

Escherichia coli causes infection in the bloodstream which can cause morbidity, mortality, and health problems (34). These infections can increase the mortality rate in the hospital and lead to resistance to antibiotics, leading to longer hospital stays (35). Nosocomial bloodstream infections caused by resistant bacteria have been reported in Africa, especially in areas that are vulnerable and at high risk of developing nosocomial infections, such as in intensive care units and pediatric departments (36-38).

USE OF ANTIBIOTICS IN ANIMALS

Antibiotics have contributed greatly to human and animal health since their appearance in the 1940s. The development of antibiotics in today’s era cannot be separated from the services of Alexander Fleming who discovered penicillin in 1928 (38). The use of antibiotics can be found in several sectors, such as hospitals (39), animal husbandry and agriculture (40), and fisheries (41) which have the impact of increasing AMR on livestock (42-46), pet (47-50), poultry (51-55), fisheries (56-59) and also obtained from animal products (60-65). The use of antibiotics is increasingly widespread, not only for treating infectious diseases (66), but also for disease prevention and as growth promoters in livestock. Unfortunately, the use of antibiotics in subtherapeutic doses for disease prevention and growth enhancement is higher than for the treatment of disease (67-69). This is one of the factors that triggers AMR in livestock (70).

For at least 50 years, farms in the United States and other developed countries have used antibiotics as Antimicrobial Growth Promoters (AGPs). AGP was first introduced in the mid-1950s. The use of antibiotics as AGP were streptomycin, sulfa-suxidine, and streptomycin to pig and chicken feed which has been shown to have a beneficial effect on livestock production for first reported (71).

Antibiotics commonly used in humans include penicillins, fluoroquinolones, and macrolides. Meanwhile, sulfonamides, penicillins, and tetracyclines are often used in animals (11). In a survey conducted in China in 2010, it was found that there were residues of ciprofloxacin, oxytetracycline, enrofloxacin and chlortetracycline in 143 manure samples (72). A survey in Chile suggested that antibiotic residues were also found in eggs produced on farms (73). Due to the high concentration of antibiotics in livestock manure, this manure is often used for fish use because it is believed to increase fish growth and maintain pond fertility (74).

Because the use of antibiotics has resulted in increasing cases of resistance, several countries have limited their use. As in the EU, the use of antibiotics as Antibiotic Growth Promoters (AGP) has been banned since 2006. While in the US it has been banned starting in 2017. In Europe, the European Food Safety Authority (EFSA) and the European Medicines Agency (EMA) recommended steps to reduce the use of antimicrobials in animal husbandry in the European Union (79). France also issued a policy of prohibiting the excessive use of antibiotics in chickens (19).

AMR OF ESCHERICHIA COIL IN FOOD OF ANIMAL ORIGIN

Escherichia coli lives in both animals and humans as normal flora which has many uses (21). But on the other hand, it can also harm humans because it causes infectious diseases (28). To avoid these losses, breeders take precautions so that their livestock remain healthy and have high productivity (72, 75). Farmers give antibiotics to prevent infection and add antibiotics as additional feed to increase livestock productivity. The use of antibiotics without supervision can lead to resistance to one antibiotic or even more than 3 antibiotics called multidrug resistant (MDR). A total of 94.9% Escherichia coli in sheep isolates showed the presence of MDR during the antibiotic sensitivity test (76). This high percentage illustrates the potential for spreading resistant microbes through animal husbandry (16). The level of microbial resistance to
Antimicrobial resistance (AMR) is a significant public health concern, with livestock and animal products playing a crucial role as reservoirs of AMR. Resistance mechanisms in bacteria are complex and can involve alterations at various levels, including the cell wall, outer membrane, and cytoplasmic membrane. For instance, resistance to β-lactam antibiotics can manifest as the production of β-lactamases, which hydrolyze the β-lactam ring of these drugs, rendering them ineffective. Other resistance mechanisms include the modification of antibiotics, such as the production of aminoglycoside-modifying enzymes, which can reduce the intracellular concentration of these drugs. In addition, multidrug resistance (MDR) and extended-spectrum β-lactamase (ESBL) producers are emerging as significant challenges, particularly in livestock and animal products, as they can cause treatment failure and selection of resistant strains.

MECHANISM OF RESISTANCE ON ESCHERICHIA COIL

Escherichia coli belongs to the Gram-negative bacteria group. Gram-negative bacteria are more easily resistant to antibiotics because they have an outer membrane that is not owned by the Gram-positive bacteria group. The outer membrane of Gram-negative bacteria is an essential structure in protection against antibiotics (81). The inner structure of this outer membrane is composed of phospholipids (PLs) and lipopolysaccharides (LPSs) in the outer structure (82). PLs and LPSs act as bacterial membrane defenses because they are composed of saturated chains so that they are hydrophobic (83). The molecules making up PLs and LPSs each carry a negative charge which allows for intermolecular linking interactions through the binding of divalent cations (84) and the presence of porin as ion selective channels so as to limit the absorption of antibiotics (85).

Escherichia coli has the ability to modify antibiotic targets, including the aminoglycoside class of antibiotics by modifying the ribosomal subunit through the acquisition of plasmids carrying 16S rRNA methyltransferases (86-87) against the fluoroquinolones group by means of mutations in the GyrA subunit which is chromosomally coded from gyrase (gyrA gene) or the ParC subunit of topoisomerase IV (parC gene) (88) and against penicillin by modifying penicillin-binding protein (PBP) (89, 90). β-lactams are a class of antibiotics that have 3 carbon rings and 1 nitrogen ring which is responsible for the bacteriolytic mechanism of action against bacteria. β-lactam works by inhibiting the synthesis of peptidoglycan which is an important component of bacterial cell walls. Escherichia coli is able to be resistant to β-lactam by producing β-lactamase enzymes. The most widely used classification for the β-lactamase enzyme is the Ambler structural classification, which is based on the similarity of the sequence, so that this protein is divided into four classes, namely classes A, C, and D of serine-β-lactamase and class B of metallo-β-lactamase (91). Escherichia coli is capable of producing several types of enzymes such as broad-spectrum β-lactamase (ESBL), AmpC β-lactamase (AmpC) (92) and carbapenemase which have different hydrolytic activity against β-lactam antibiotics (93). ESBL is a major concern in the medical world because it has the highest level of causative factors for β-lactamase resistance (94). ESBL is predominantly class A in the Ambler classification and is resistant to penicillins, first, second, and third generation cephalosporins and monobactams (for example, aztreonam). carbapenems can be inhibited by β-lactamase inhibitors such as clavulanic acid, tazobactam and sulbactam (95).

AmpC has the ability to hydrolyze amino- and ureidopenicillins, oxyimino-β-lactams such as ceftazidime, cefotifur, and aztreonam and deactivate cephalosporins such as cephamycins (cefoxitin) (96-97). AmpC-producing Escherichia coli strains ranging from 2.0% were isolated from patients in Portuguese hospitals (98) to 16.7% from three university hospitals in Iran (99) and 29.0% from five referral hospitals in Sudan (100). AmpC and ESBL may be owned by a strain of Escherichia coli simultaneity, which causes the mechanism of action of antibiotics to be more complicated and resistance to increase (82, 101). Carbapenems bind to penicillin-binding proteins and induce spherooplast formation and cell lysis. The Escherichia coli strain that produces carbapenemase has the ability to hydrolyze the antibiotic carbapenem (102). Increased resistance to carbapenem antibiotics has been reported in several countries, one of which is China, which in 2011 was 0% of cases then increased to 1.9% in 2017 (103).

Several types of efflux pumps found in E. coli are the ATP-binding cassette (ABC) family, the multidrug and toxic compound extrusion (MATE) family, the major facilitator superfamily (MFS), and the resistance-nodulation-division (RND) family. Escherichia coli has an ABC group efflux pump, namely the MacAB transporter which provides resistance to several macrolides (104); MATE which is capable of transporting fluoroquinolones (105, 106); MFS capable of transporting macrolides (MeF and MdFA pumps), fluoroquinolones (QepA2, EmrAB-ToIC, and MdFA pumps), tetracyclines (EmrAB-ToIC and MdFA pumps), trimethoprim (Fsr pumps), and chloramphenicol. Other types of efflux pumps include the multidrug and toxic compound extrusion (MATE) family and the major facilitator superfamily (MFS), which are responsible for the resistance of bacteria to a wide range of antibiotics.

Public Health Importance

The increasing prevalence of AMR in livestock and animal products has significant public health implications. Resistance patterns differ by region and country, reflecting the diverse antibiotic use and resistance selection pressures. In regions with high levels of antibiotic use, such as in intensive livestock farming, the risk of acquiring and transmitting AMR is higher. Moreover, the emergence of MDR and ESBL producers in livestock and animal products can lead to the dissemination of resistance traits to human pathogens, highlighting the need for global collaborative efforts to combat AMR.
Microbial resistance to antibiotics is a health problem that continues to be a global challenge. One of them is Escherichia coli which is commonly found in livestock and humans as well as animal products that are resistant to several classes of antibiotics. Animals and food of animal origin such as poultry, pigs, cattle, sheep, eggs, and milk are reservoirs for resistant Escherichia coli that have the potential to cause disease in humans. Because there are fewer choices of antibiotics that are sensitive to microbes, it is necessary to look for new antibiotic alternatives that are more effective in treating pathogenic infections, especially Escherichia coli. In addition, there is a need for strict regulations governing the use of antibiotics in livestock and poultry to break the chain of antibiotic resistance.

ACKNOWLEDGEMENTS

This study was in part funded by the Direktorat Riset dan Pengabdian Masyarakat, Deputi Bidang Penguatan Riset dan Pengembangan, Kementerian Riset dan Teknologi/ Badan Riset dan Inovasi Nasional, Indonesia in fiscal year 2020 with grant number: 756/UN3.14/PT/2020.

REFERENCES

36. Tansari GS, Poulikakos P, Kapaskelis A, Falagas ME. Proportion of extended-spectrum β-lactamase...

128. de Jong A, Muggeo A, El Garch F, Moyaert A, de Champs

