Obstructive sleep apnea (OSA) is a sleep-related respiratory disorder with a reduction or obstruction of total air flow despite continuous efforts with patrons to breathe. The prevalence of OSA is around 2-4% in men and 1-2% in women. The American Academy of Pediatric Dentistry (AAPD) recognizes that obstructive sleep apnea (OSA) occurs in a pediatric population. Oral myofunctional therapy has emerged as an alternative treatment that allows for obstructive sleep apnea (OSA). The aim of this study is to systematically review the literature on oral myofunctional therapy for future care in children with obstructive sleep apnea (OSA). Data source of Web of Science, Scopus, and The Cochrane Library. Studies published from 2011 to 2020 that evaluate treatments with isolated oral myofunctional therapy in subjects with OSA. Sixty articles were assessed, including 60 text articles were included. All of these articles say that myofunctional therapy has the potential to be an option for OSA treatment. Therefore a systematic literature review shows that oral myofunctional therapy for future treatment of obstructive sleep apnea in children (OSA).

Keywords: Obstructive Sleep Apnea; Myofunctional Therapy; Pediatric Correspondence: Harun Achmad Lecturer of Pediatric Dentistry, Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Indonesia E-mail: harunachmader@gmail.com

DOI: 10.31839/srp.2020.6.80

The American Academy of Pediatric Dentistry (AAPD) recognizes that obstructive sleep apnea (OSA) occurs in a pediatric population. Undiagnosed and / or untreated OSA is associated with learning problems, cardiovascular complications, growth disorders (including failure to develop), and / or behavioral problems. To reduce these complications, AAPD encourages health professionals to routinely screen their patients for increased risk. For OSA and to facilitate medical referral when indicated. The pathophysiology of pediatric OSA is often multifactorial, with significant contributions from adenotonsillar hypertrophy, obesity, and genetics. Polysomnography is currently the most accepted diagnostic modality for OSA, but limited availability and high cost limits are routine. At present, there is no consensus among anesthesiologists regarding the best and safest anesthetic techniques for children with significant OSA; there is also a lack of agreement between anesthesiologists, surgeons and institutions on specific criteria for identifying children with OSA who will benefit from hospital admission and aggressive postoperative monitoring after surgery. The purpose of this review is for an overview of oral myofunctional therapies for future treatment in children with obstructive sleep apnea.
Diagnosis of OSA in children can be a challenge due to various symptoms that arise. The evaluation of children with suspected sleep disorders begins and, for the most part, ends with a thorough history.\(^1\) OSA clinical presentations include behavioral and neurocognitive disorders, enuresis, cardiovascular sequelae, poor school performance, and headaches, including systemic and pulmonary hypertension. It is important to note that parental reports alone do not distinguish OSA from simple primary snoring.\(^2\) The accuracy of clinical evaluation of pediatric OSA in predicting poor sleep studies is poor, ranging from 30% to 85%.\(^3\) Further diagnostic evaluation of a child with a clinical history suggestive of OSA includes polysomnographic performance, which is considered a gold standard for diagnosis and quantitative description of OSA.\(^4\) Children with snoring primary do not have other night and daytime symptoms and have normal sleep polysomnographic studies. Polysomnography continuously monitors physiological variables during different sleep phases and can distinguish primary snoring from OSA and also provides a more complete description of obstructive events that occur during sleep.\(^5\) Central sleep apnea is characterized by polysomnography in the absence of airflow and respiratory effort. Some patients, especially those with neuromuscular conditions, can display a mixture of centers and OSA.\(^6\) Daytime polysomnography has been used to evaluate children with suspected Sleep Disorders, although normal nap studies are not enough to exclude the diagnosis of OSA in patients with manifestations clinical that suggest OSA.\(^7\) While the validity of portable monitoring modalities in the diagnosis of OSA in children is still unknown, there is increasing interest in their use in polysomnographic sites to increase access and reduce costs. One example of a portable monitoring modality is nocturnal oximetry, which assesses the severity of OSA by calculating the amount and severity of oxyhemoglobin desaturation during sleep. Isolated heavy desaturation (80%) or desaturation group (more than three episodes, 90%) are considered abnormal. The positive predictive value for oximetry is 97%.\(^8\)

Table 1: McGill Oximetry Assessment System. The severity of OSA is determined by the presence of SpO2 and the number of events during nocturnal oximetry. OSA, obstructive sleep apnea\(^9\).

<table>
<thead>
<tr>
<th>Oximetry Score</th>
<th>OSA Classification</th>
<th>Number of events of SpO2 <90%</th>
<th>Number of events of SpO2 <85%</th>
<th>Number of events of SpO2 <80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal/Inconclusive for OSA</td>
<td><3</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>Mild</td>
<td>≥3</td>
<td>≤3</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>Moderate</td>
<td>≥3</td>
<td>>3</td>
<td>≤3</td>
</tr>
<tr>
<td>4</td>
<td>Severe</td>
<td>≥3</td>
<td>>3</td>
<td>>3</td>
</tr>
</tbody>
</table>

Table 2: The severity of OSA by polysomnography (PSG) in children and adults as defined by the American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Obstructive Sleep Apnea. OSA, obstructive sleep apnea; AHI, apnea / hypopnea index.\(^2\)

<table>
<thead>
<tr>
<th>OSA severity</th>
<th>AHI Children</th>
<th>AHI Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>Mild</td>
<td>1-5</td>
<td>6-20</td>
</tr>
<tr>
<td>Moderate</td>
<td>6-10</td>
<td>21-40</td>
</tr>
<tr>
<td>Severe</td>
<td>>10</td>
<td>>40</td>
</tr>
</tbody>
</table>

Risk factors for the development of OSA in children include a family history of snoring or OSA, physical abnormalities, cerebral palsy, muscular dystrophy, Down syndrome, sickle cell disease, oral breathing, and any conditions that can cause narrowing in OSA, upper airway. An important common risk factor for OSA is obesity.\(^10\) According to Tauman and Gozal, the recent increase in obesity has led to an increase in OSA prevalence among children, because this condition has been shown to be positively correlated with body mass index.\(^11\) Symptoms of Pediatric OSA include loud snoring 3 or more nights per week, episodes of respiratory arrest witnessed by others, sudden wakes accompanied by shortness of breath, mouth breathing including symptoms of dry mouth or sore throat, difficulty sleeping with several sleepless nights, day, anxiety, sweating, waking up in the morning feeling not refreshed, and finally, frequent headaches in the morning.\(^12\) Daytime consequences of Sleep Disorder Breathing can affect the nervous system, cardiovascular system and/or the inflammatory system.\(^13\) Physiologically, the pharynx is a very easily narrowed area in its overall expansion.\(^14\) The activity of widening pharyngeal muscles, especially the genioglossus and palatini tensor muscles that oppose the pharyngeal tendency to collapse as a protective mechanism.\(^15\) Changes in the mechanism are associated with obstructive sleep apnea disorder syndrome. Treatment options for OSA include weight loss, position therapy, oral appliances, positive continuous airway pressure (CPAP), and surgery. Operations offer a viable alternative to nasal CPAP in patients who are intolerant of nasal CPAP. In that case, oral appliances such as myofunctional therapy applied to OSA,\(^16\) has the aim of strengthening the nasopharyngeal and oropharyngeal muscles which contribute to reducing airway collapse during sleep, the exact mechanism by which Oral...
Myofunctional Therapy helps with Sleep Respiratory Disorders is still unclear to this day. At this stage, a systematic review is needed to prove the level of scientific evidence of myofunctional therapy as a future treatment for Obstructive Sleep Apnea in children. The aim of this study is to systematically review the literature for articles evaluating Oral Myofunctional Therapy exercises as a treatment for OSA in children.

METHODS

Search Strategy
A search was performed on Web of Science, Scopus, and The Cochrane Library. Studies published from 2010 to 2020 that the treatment with isolated Oral Myofunctional Therapy in subjects with OSA were included. MeSH terms and keywords used for the search included various combinations of the following: "myofascial reeducation," "myofunctional therapy," "obstructive sleep apnea," "orofacialmyotherapy," "oral myotherapy," "sleep," and "sleep apneasyndrome." One example of search is: ("Myofunctional Therapy" AND "Sleep Apnea Syndromes") OR ("sleep" AND ("myofascial reeducation" OR "myofunctional therapy" OR "rapid maxillary expansion") OR each of the searches, the titles and abstracts were screened and the full text versions of articles that met criteria were downloaded. Full texts were reviewed and any referenced articles that were not already obtained were ordered and obtained. "Related citations" were also reviewed during these searches, and the "cited by" function on Google Scholar was also used to identify any additional studies. The flowchart in Figure 2 identifies the included and excluded articles at each stage. Sixty were assessed, including 60 articles from the electronic databases, 0 from the manual hand search. 50 records screened, 30 records excluded, 22 full-text articles assessed for eligibility and 10 full text articles included.

LITERATURE REVIEW

In this systematic review there are study selection: inclusion criteria for this review were: 1) children (<18 years old) with OSA, 2) all languages, 3) all study designs and publication types were considered, 4) Article 2011-2020 year, and 5) both published and unpublished data were sought out. Exclusion criteria were 1) studies that are not about RME as treatment for OSA, and 2) adult.
Table 3: Study design and treatment protocol

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study Type</th>
<th>N</th>
<th>f/m (mean age)</th>
<th>Variables analyzed</th>
<th>Treatment</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caprioglio et al., (2014)</td>
<td>Quasi-experimental, not randomized, no control</td>
<td>14</td>
<td>(7.1 ± 0.6)</td>
<td>AHI SpO2</td>
<td>Rapid maxillary expansion (6 months)</td>
<td>Treatment improve SAHS (Sleep Apnea-Hypopnea Syndrome)</td>
</tr>
<tr>
<td>Rabasco et al., (2014)</td>
<td>Quasi-experimental</td>
<td>40</td>
<td>(4-8)</td>
<td>AHI</td>
<td>Rapid maxillary expansion (6 months)</td>
<td>Data confirm the efficacy of Orthodontic treatment for children with slight or moderate SAHS</td>
</tr>
<tr>
<td>Villa et al., (2014)</td>
<td>Quasi-experimental control group, not randomized</td>
<td>52</td>
<td>15/37 (5.03)</td>
<td>AHI SpO2</td>
<td>Rapid maxillary expansion (6 months)</td>
<td>Treatments improve SAHS</td>
</tr>
<tr>
<td>Fastuca et al., (2015)</td>
<td>Quasi-experimental no control group, not randomized</td>
<td>15</td>
<td>11/4 (7.5 ± 0.3)</td>
<td>AHI SpO2</td>
<td>Rapid maxillary expansion</td>
<td>RME improves oxygen saturation for patients with posterior crossbite</td>
</tr>
<tr>
<td>Villa et al., (2015)</td>
<td>Quasi-experimental no control group, not randomized</td>
<td>40</td>
<td>17/23 (6.3 ± 1.6)</td>
<td>AHI SpO2</td>
<td>Rapid maxillary expansion</td>
<td>It is important to start orthodontic treatment early to improve treatment efficiency</td>
</tr>
<tr>
<td>Pireleli et al., (2015)</td>
<td>Clinical evaluation</td>
<td>31</td>
<td>(8.68 years old)</td>
<td>AHI SpO2</td>
<td>Rapid maxillary expansion (6 months)</td>
<td>RME treatment for pediatric OSA</td>
</tr>
<tr>
<td>Villa et al., (2017)</td>
<td>Case control study</td>
<td>54</td>
<td>Sleep-disordered breathing (7.1 ± 2.5), Healthy children (7.8 ± 2.2)</td>
<td>AHI</td>
<td>Myofunctional therapy (6 months)</td>
<td>Myofunctional therapy can be used to integrate medical and surgical treatments for OSA and help restore the resting posture of the tongue; appropriate oral, lingual and facial muscle patterns; nasal breathing; normal lip posture; and correct swallowing patterns</td>
</tr>
<tr>
<td>Klauer (2018)</td>
<td>Case study</td>
<td>1</td>
<td>9 years old</td>
<td>AHI</td>
<td>Myofunctional therapy (3 months)</td>
<td>Myofunctional therapy is a great tool in our armamentarium for treating children and adults with malocclusion or OSA</td>
</tr>
<tr>
<td>Hsu et al. (2018)</td>
<td>Clinical evaluation</td>
<td>54</td>
<td>4-16 years old</td>
<td>AHI</td>
<td>Passive myofunctional therapy (3 months)</td>
<td>Passive myofunctional therapy is a valid alternative treatment for pediatric OSA</td>
</tr>
<tr>
<td>Shim et al., (2019)</td>
<td>Case reports</td>
<td>2</td>
<td>7 years old</td>
<td>AHI SpO2</td>
<td>Passive myofunctional therapy (6 months)</td>
<td>Sleep Disorder Breathing in early childhood can have adverse effects on myofunctional balance and is associated with malocclusion. Orthodontic treatment, alone does not guarantee that these issues will be resolved. Myofunctional therapy may facilitate successful orthodontic treatment and maintenance</td>
</tr>
</tbody>
</table>

Table 4: Cephalometric measurements before and after treatment Myofunctional Tools in Children with Sleep Disorders: Two Case Reports

<table>
<thead>
<tr>
<th>Case Reports</th>
<th>SNA (81)</th>
<th>SNB (77)</th>
<th>ANB (3)</th>
<th>APDI (81)</th>
<th>FM A (26)</th>
<th>U 1 to SN (105)</th>
<th>IMPA (95)</th>
<th>Interincisal angle (122)</th>
<th>Incisal overjet (3,3)</th>
<th>Incisal overbite (2,3)</th>
<th>U-Nasopalatal angle</th>
<th>L-Nasopalatal angle</th>
<th>Nasolabial angle (100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shim et al (2019)</td>
<td></td>
</tr>
</tbody>
</table>
Based on (Table 4) Caprioglio et al. reported not randomized quasi-experimental with no control of 14 children who received myofunctional therapy using rapid maxillary expansion. The exercise group was followed up for 6 months. The exercise is repeated several times a day in 6 months. Further in table 3 with other studies. In contrast to (Table 4) the case report shows cephalometric measurements before and after the treatment of myofunctional devices in children with respiratory disorders during sleep. The different with Klauser study design case study with 1 children and they exercise using myofunctional device is only 3 month has that can be a great tool in our armamentarium for treating children and adults with malocclusion or OSA.

Case report 1 (Table 4) on extraoral examination, lateral convex profile and lip disability were observed. The incisors of proklin (U1 to SN 110.2°), substantial overjet (7.2 mm) and normal overbite (3.4 mm) were recorded in cephalometric analysis. Large ANB (6.0°) and reduced APDI (74.7°) were also recorded. FMA is 39.3°, which means normal vertical growth. Furthermore, the tendency of the class II framework with the mandible being reexamined with respect to the maxilla, was observed. As for soft tissue analysis, the upper lip is protruding (Nasolabial angle 80.9°) and the lower lip is eluted again (L-nasolabial angle 68.8°). In the analysis of the cast model, the molar relationship is the terminal flush plane and the canine relationship is class I. The upper and lower arches are narrow. Patients were diagnosed with class II division 1 as a consequence of Sleep Disorder Breathing.

After 6 months of treatment, U1 to SN decreased from 110.2° to 101.1° and IMPA increased from 94.4° to 96.8° (Table 4). Overjet was reduced from 7.2 mm to 3.7 mm, and overbite from 3.4 mm to 2.3 mm. The nasolabial angle and the L-nasolabial angle increased from 80.9° to 91.1° and 68.8° to 71.3°, respectively. AHI has decreased from 1.3 to 0.6, and the average SpO2 has increased from 96.6% to 97.2%. Oral breathing is returned to nasal breathing, and moderate lip competence with decreased bruxism is noted.

Case report 2 (Table 4) On extraoral examination, convex lateral profile, and poor lip competence were observed. On intraoral examination, the tongue offered with an anterior openbite was found. The cephalometric analysis showed retrocline upper incisors (U1 to SN 99.4°) and lower incisors (IMPA 85.1°). A reduced ANB (1.4°) and APDI (73.3°) were also recorded. FMA is 39.3°, which means vertical growth patterns. The pattern of the malocclusion framework is ambiguous because ANB and APDI are conflicting. The nasolabial angle and the nasolabial angle are both reduced. In the cast model analysis, the molar relationship is the terminal flush plane and 3 deciduous canines (# 53, 73, 83) are lost prematurely. The diameter of the mandible is shifted about 2.6 mm to the right. Overbite -1.4 mm and overjet 3.8 mm. The upper and lower curved shapes are tapered and ovoid respectively. The patient was diagnosed with Angle 2 malnutrition class 2 division 2 and had symptoms of Sleep Disorder Breathing.

After 6 months of treatment, there was an increase in APDI from 73.3° to 77.5°, which is within the normal range (Table 4). Clinically, convex lateral facial profile is also found to decrease. The bimolar width between the dento-gingival junction center of the first primary molar has increased from 21.4 mm to 22.9 mm in the maxilla, and from 22.0 mm to 23.3 mm in the lower jaw. In contrast, the bimolar width between the dento-gingival junction center of the first permanent molar has decreased from 29.5 mm to 28.3 mm in the maxilla, and from 31.3 mm to 31.1 mm in the mandible. AHI decreased from 1.8 to 1.0 after 6 months of treatment, and the mean SpO2 increased from 96.2% to 97.3%. Respiratory Sleep Disorders are improved with Myofunctional therapy.

DISCUSSION

Myofunctional therapy has the potential to be an option for the treatment of OSA. This is defined as a treatment for facial and mouth muscles, which is very important for the maintenance of craniofacial integrity to achieve normal nasal breathing. Re-education of myofunctional therapy trains normal and strong sucking, good mastication using both sides of the jaw, normal swallowing, normal tongue position, and nasal breathing with lips in good contact at rest. Nasal breathing upon awakening and sleeping is a demonstration of normal respiratory function, and persistence of mouth breathing is an indicator of abnormal respiratory function.

Myofunctional therapy requires the involvement of at least one parent and child for a minimum of 10 minutes of active exercise both in the morning and at night. Maintaining this routine has proven challenging with young children and
compliance has been limited, especially if there is no routine contact with myofunctional specialists who can provide support to parents and children.41

Recently, myofunctional therapy (MFT) has been suggested as additional treatment of Sleep Disorder Breathing (SDB) in children.42 Results Studies conducted in children with obstructive problems have shown that extensive, well-controlled isolated myofunctional therapy can lead to a return to normal orofacial anatomy. In adults, there is an increase in OSA and snoring as well.43,44,45 But usage myofunctional therapy itself when dealing with pediatric SDB have has not been widely investigated and the long-term effects of myofunctional therapy on SDB are still unknown. Problem where myofunctional therapy has been reported: (1) current form MFT is difficult for children under 4 years, (2) poor compliance with daily exercise and the absence of ongoing parental involvement with exercises for children are the main cause treatment failure. Preliminary studies are indicated that the use of functional oral tools is thought of induces some extra muscle activity during sleep (also called "passive myofunctional therapy" [PMFT]) can reduce mouth breathing and have impact on the position of the mandible.

CONCLUSION

Therefore a systematic literature review shows that oral myofunctional therapy for future treatment of obstructive sleep apnea in children (OSA).

REFERENCES

