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ABSTRACT
Recently, the management of drinking water pipelines must face challenges.
Because thesepipesaremostly locatedunderground, theyarevulnerable todamage
overtime. Thisdamagecausesproblemssuchas ruptureandleakage inthepipe. This
paper proposes to optimally select the appropriate pipe diameter during pipeline
replacement planning for drinking water pipelines using an integer programming
model. First, the problem was formulated to minimize replacement costs
(economic perspective) by considering hydraulic constraints namely stabilityofflow
velocityforeachpipeandwaterpressureateachnode. Wesolvedthemodel using
an improved direct search approach.
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INTRODUCTION
Management of water pipelines may raise explicit
issues. A water pipe network refers to a category
of resources recognized as linear assets, such as
roads, rail lines, electricity lines, gas and oil
pipelines, or telecommunications networks. After
a while, the pipelines deteriorate in underground
water distribution systems. This worsening of the
water pipelines contributes to malfunctions such
as leakage and breakage, consequently, causes a
lack of fresh water, emergency and unplanned
maintenance, disruption of water supply, damage
to property or losses. Many of these impacts
appear to be interlinked and may be compounded
in extremely costly cases.
Optimizing the pipe network involves calculating
a new pipe network and rehabilitating the current
network. There are two hydraulic regulations for
the water distribution system: the demand for
water and the pressure head in the supply areas.
There have been three methods of optimization,
the lowest cost model, the highest profit design
and the cost-benefit trading system, Wuet al. [1]:

 The least cost optimization is the quest for
the ideal alternative by minimizing costs
whereas meeting development
constraints. However, the lowest price
optimization generates the minimum size
of the pipe to reduce the capacity and
reliability of the supply.

 Optimization of the highest point profit
design maximizes the return on the funds
consumed by seeking the most profitable
alternative within an accessible budget
while remain complying with hydraulic
limitations.

 Optimizing the cost-benefit balance using
a multi-objective design model is
accomplished to minimize costs and
maximize benefits while meeting
constraints.

Typically, almost all of the water distribution
network design work was aimed at creating
optimization processes to address the lowest
price pipe size issue.
Throughout water distribution schemes, various
optimization techniques are applied. There are
stochastic optimization methods such as genetic
algorithms, simulation annealing and
deterministic types for optimization such as linear
programming, non-linear. Djebedjian et al. [2]
summarizes how these approaches are used in
water distribution networks. Genetic Algorithms
(GAs) have been widely used to optimize hydraulic
requirements for water distribution systems. GAs
greatest assets are that they use a population of
changing alternatives and recognize a number of
options that can be chosen by the decision-maker
instead of a single optimum. The primary
drawback is the increased computing strength.
The literature review indicates that optimization
is common in simple water distribution systems.
Large-scale development of water networks has
certain significant characteristics, such as
population overgrowth and topography. Some
articles focus on information on specific
management planning research or on proper
water distribution systems.
Rayan et al. [3] used a sequential, unrestricted
minimization method to optimize the El-
Mostakbal City network, as well as the existing
Ismailia City, Egypt distribution network. The
expansion network consists of 31 nodes and 43
tubes. Letha and Sheeja [4] used the basic cost-
and-loss ratio technique and applied it to a real
field issue: the area in Thiruvananthapuram City,
Kerala State.
In order to demonstrate the practical
implementation of the GA, Shau et al. [5] chose the
Ruey-Fang water supply system in Taipei County.
There are 26 pipelines, 20 nodes, and 2 water
intake sites. Water treatment plant is one of intake,
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while Kung-Liao system support is the other.
Wu et al. [1] has researched a water distribution
system that supplies approximately 18.3 million
gallons of water per day for peak demand. The
hydraulic network model includes 2018 tubes,
1371 nodes, 3 valves, 1 reservoir, 9 high-power
units and 20 wells. Optimization processes have
been applied in four circumstances to refine the
alternatives for change: to achieve complete
demand development, to evaluate sustainable
demand growth, to increase water production and
to prioritize capital improvement phases.

ANALYSIS RELIABILITY
Reliability analysis acts an important role in
enhancing the capacityof the water pipe network.
The performance of the system is likely to meet its
primary purpose under specified conditions for a
specified period of time [6].
Prior to 2001, Kleiner and Rajani [7] carried out a
thorough assessment of the statistical models for
structural deterioration of water systems. By
observing the details of historical performance,
they tried to calculate the structural deterioration
of the water mains. Statistical methods have been
classified into deterministic and probabilistic
models. The analysis presented summaries of the
different models, including their predominant
calculations, as well as feedback, correlation and
description of the types of data needed for
implementation. Several efforts have been made
in recent years to achieve stronger prediction
results for water pipe errors.
Existing models frequently consider all pipes in the
pipe system when evaluating the efficiency of the
water pipes. Water pipes, however, are usually
linear properties; they have no definite physical
boundaries and generally cover long distances
that may be classified into sections [8]. Each
section has the same role, but separate burdens
and environmental circumstances may apply. The
accuracy of all other sections cannot be affected
by the failure of a single segment of the pipe. As a
result, a water pipe should be seen as a number of
segments. However, most current models do not

recognize the personal contribution of different
pipe sections to the reliability of the system.
There are two questions to answer: how many
groups should be divided, and what conditions
should be used to create a group? The number of
subgroups should be balanced by two elements:
(1)homogeneityineachsubgroup,and(2) sufficient
informationon the risk calculation error. The more
divided the groups, the more homogeneous the
characteristics are within each community, but
there are fewer observations remaining for
statistical analysis in each subgroup.
The literature offers a range of methods that rely
on specific features to divide water pipe data into
populations. Some classify pipes according to
specialized engineering expertise [9]. This kind
of strategy has the advantage that pairing
focuses on practical knowledge of the
characteristics of the pipe and its failure
methods. For example, different substances have
different physical characteristics that can
contribute to different types of error and failure
levels. However, only materials and ages are taken
into account in these strategies. A ANOVAmethod
was developed to analyze error data [10]. It
groups the break data and sets the break
frequency patterns for each group. However, in
order to validate the results of the grouping, the
criteria of the grouping must be chosen, first on
the basis of the previous understanding, before
ANOVA. In particular, it is necessary to investigate
the prior understanding of the grouping criteria.
In addition, it is assumed that an exponential
increase over time meets the rate of breakage,
which in some cases is not consistent with the
facts.

OPTIMIZATION MODEL FORMULATION
The objective of the optimization of the water
distribution network is to identify suitable pipe
diameters for the specific design and demand
needs of the network. Optimal tube dimensions
and limitations (e.g. hydraulics and structural
requirements) will be chosen for mass and energy
conservation in the initial network.

The equation (1) is the objective function for the total network cost notated by CT:
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where Di per unit length, Li is the length of pipe i,
ci (Di) the cost of pipe iwith diameter and N is the
total number of pipes.
Decreased prices for the network have been
defined by the conservation of mass and
conservation of energy. Mass storage means, with

the exception of reservoirs and tanks as storage
nodes, that the release into each node is
equivalent to that left by the node. This constraint
can be written for the total number of M nodes on
the network:
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where Qj is the discharge of the j node (including the sign).
Energy conservation states that if a pump Ep exists, the total head loss around each loop must be zero or
the energy supplied by:

f ph E (3)
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T

where hf is a loss of head in a pipe due to friction. It requires that the head loss of any pipe, which depends on
the size, width and hydraulic characteristics of the pipe, is equivalent to the disparity between the nodal
heads.
Various forms of head loss equations have been produced for functional pipe flow calculations. The Hazen
Williams equation explains the hf head loss in the pipe in this study:
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where Ci is the Hazen-Williams coefficient, Qi is the pipe flow (m3/s), Li is pipe Length (m) and Di is pipe diameter
(m).

Formula total cost of replacement and discretized
The summary of replacement costs and losses of one of the pipes replaced by ∗ during a planning period T is shown
as:
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where Crepl is the replacement cost Equation (5) contains three parts:
(1) Crepl is the cost of replacement during the T (which may or may not occur);

(2)
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    indicates the failure cost prior to the replacement activity at age *;
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     is the cost of failure after the replacement activity, where reliability meets

the declining pattern of” as good as new” age from the beginning of *.

Commonly, the repaired time is reported on the date or year of operation. Then (5) is changed in a discretised
such that total cost of plan year T is given as follows:
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where  is a discretised age in year, n = 1, 2, …, T.

Cost formulas based on planning year t
Typically, the substitution system is linked to the
calendar year instead of the age. Accordingly, the
age-specific total cost of τ should be converted
from the planning year to the calendar year-
specific total cost of t. Let cur D be the actual date

of installation in year and let instDi be the date of
installation of each i pipe in year.
Throughout the preparation horizon T, the cost
of repairing the pipe i for its calendar year τ∗ (τ∗
= 1,2,...,τ) is as follows:
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where Nsegi is number of segments of pipe i.
Assuming that only one alternate procedure can be carried out throughout the planning horizon T, the total cost
of elimination of pipe i during the planning horizon T during its calendar year t* is as follows:

Crepl,i,t* = Crepl,i (8)

The total cost of installation pipe i of planning T is therefore estimated for the t* calendar year
Ci,t* = Crepl,i,t* + Cfail,i,t*

The objective must be minimized under the constraints. These limitations are the development and
hydraulic constraints. Structural constraints (maximum and minimum pipe diameter thresholds) and
hydraulic constraints were defined as:

:
Dmin ≤ Di ≤ Dmax i = 1, ..., N (9)
Hj, min≤ Hj ≤ Hj, max j = 1, ...,M (10)

where Hj is the pressure head at node j, Hj, max and Hj, min are the maximum andminimum allowable pressure heads at node j.
Due to the fact that the availability of pipes in markets is in certain diameter, then the problem becomes a nonlinear integer
programming model.
1. THE BASIC APPROACH
It is worth considering the core strategy of the linear scenario system, i.e., Integer Linear Programming (ILP)
problem until we pass on problems with INLP.
The equation (11-14) be consideration of aMILP problem

Minimize P = cTx (11)
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Subject to Ax  b (12)
x  0 (13)

xj integer for some j  J (14)

If vector (xB)k, be component of optimal basic and feasible, then MILP solved is a continuous can be expressed as the
following:

1 * ,( ) ( )1 ( ) ( )B k k k kj N j k n m N n mx xN x x            (15)

The table 1 of the simplex technique at the end. If k is not an integer and (xB)k is an integer, k can be partitioned
into:

[ ] , 0 1k k k kf f     (16)
Presume we want to multiply (xB)k to its nearest integer, ([ ] + 1). On the basic of the theory of suboptimal solutions, we
can increase a certain parameter i.e. (xN)j*, above its zero limit, given that kj*, is a negative element of the j* vector. That
 j* is a non-variable (xN)j* movement number, so that the numerical scalar value (xB)k is an integer. With referring to Eqn.
(15), j* can be expressed as the following:

*
*
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f

kj

f


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

(17)

while the remaining non-basic is zero. After (16) replacing (xN)j* into in (17) and taking into account the (xB)k splitting in (16),
we can see that:

(xB)k = [ ] + 1

Thus, (xB)k is now an integer.
The non-basic variable is now apparent and plays a
significant role for integerizing of related basic variable.
Therefore, the following finding are important to verify
that a non-integer variable must be used to function is the
integerization system.
Theorem 1. Let (11) – (14) has an optimal solution for the
MILP problem, then some of the non-basic variables. (xN)j, j
= 1, 2, n,must be non-integer variables.
Proof:
Solving problem as a continuous of slack variables (which
are non-integer, except in the case of equality constraint).
If we assume that the vector of basic variables xB consists
of all the slack variables, then all integer variables would
be in the nonbasic vector xN and therefore integer valued.
Derivation of method

It is clear that the other components, (xB)i  k, of vector xB
will also be affected as the numerical value of the scalar
(xN)j* increases to  j*. Consequently, if some element of
vector j*, i.e., j* for i  k, are positive, then the
corresponding element of xB will decrease, and eventually
may pass through zero. However, any component of
vector x must not go below zero due to the non-negativity
restriction. Therefore, a formula, called the minimum
ratio test is needed in order to see what the maximum
movement of the nonbasic (xN)j is* such that all
components of x remain feasible. This ratio test would
include two cases.
1. A basic variable (xB)jk decreases to zero (lower bound)

first.
2. The basic variable, (xB)k increases to an integer.

Specifically, corresponding to each of these two cases
above, one would compute
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0
*
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j
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i k
j






 

    
  

(18)

2 = j* (19)
How far one can release the nonbasic (xN)j* from its bound of zero, such that vector x remains feasible, will depend on the
ratio test * given below

* = min (1, 2)
(20)

Obviously, if * = 1, one of the basic variables (xB)ik will hit the lower bound before (xB)k becomes integer. If * = 2, the
numerical value of the basic variable (xB)k will be integer and feasibility is still maintained. Analogously, we would be able to
reduce the numerical value of the basic variable (xB)k to its closest integer [ k]. In this case the amount of movement of a
particular nonbasic variable, (xN)j* , corresponding to any positive element of vector j’ , is given by

'
'

k
j

kj

f


  (21)

In order to maintain the feasibility, the ratio test * is still needed.

Algorithm
The table 1 partition the full index set , {1, 2, …, n}, ie JB 
JS  JL  JU = {1, 2, …, n} and J  J  ,   .
The J1 range of indices for integer variables is assumed to
be of small, and m + nS + nL + nU = n range is assumed to be
small.
The strategy implies that the ongoing issue is
resolved and that it seeks an integer-feasible

alternative in the near neighborhood of a
continuous solution. The basic philosophy of the
analysis includes the abandonment of non-basic
integer variables (and hence the value of integer)
and the search for limited space for basic, super
basic and non-basic continuous variables, j  JI.
The method can be generally described this way:



An Optimization Model for Drinking Water Pipeline Network Considering Pipe
Deterioration

937 Systematic Reviews in Pharmacy Vol 11, Issue 2, Feb-Mar 2020

1. Acquire solution of the continuous relaxation as a
non-linear programming problem.

2. CYCLE1: move an improper variable to an
integer value by removing it from the basis at
the boundary and turning it into a super-basic

array, which is substituted by the previous
non-basic value.

We partition, denote and define the index set as in table 1
below:

Table 1. Difene and simplex partition index sets

Name Difene the required index sets for Cardinality
JB basic variables  JB  =m
JS super basic variables  JS  = nS
JU nonbasic variables at upper bounds  JL  = nL
JL nonbasic variables at lower bounds  JU  = nU
JI integer variables  JI  = nI

3. CYCLE2, pass1: adapt integer-infeasible super-basic by fractional steps to meet complete integer-feasibility.
4. CYCLE2, pass2: adjust integer feasible super-basics. By conducting a high-localized neighborhood search to verify local

optimality [11].
There are seven steps in cycle as follows.
Step 1. Get row i* the smallest integer not feasible, such that i* =min {fi, 1 – fi}
Step 2. Perform a pricing operation

1
* *
T T
i iv e B

Step 3. Calculate *
T

ij i jv a 
With j corresponds to

min j

j
ij

d


  
 
  

Measure the maximum non-basic j movement at the upper and lower bounds. Alternatively, go to the next
non-integer non-basic or super-basic j (if available). Column j* will finally be increased by form LB and
reduced by UB. it none If none them is heading to the next i*.

Step 4. Solve B j* = j* for j*

Step 5. Perfrom ratio test for the basic variables in order to stay feasible due to the releasing of non-basic j* from its upper
and lower bounds.

Step 6. Exchange basis
Step 7. If row i* = {0} go to Stage 2, otherwise
Repeat from step 1.

CONCLUSION
Optimizing a massive water distribution system is
a tricky issue. Replacement of the water pipeline
plays a very crucial task in managing the
inaccuracies of the water pipe, the budgeting of the
infrastructure and the quality of the community
service. Analyzing reliability and optimizing
appropriate replacement results will improve the
water pipeline replacement scheduling. This
paper created a model for water pipelines to
provide refined financial substitution plans to
meet the needs of minimum costs and
interruptions in operation.
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