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ABSTRACT 

Pharmaceutical inventory problem which include the planning of 

pharmaceutical inventory is considered.  The planning is based on the 

patient population which comes up as uncertain and vary through 

time. So that the demand becomes stochastic. Therefore, it is necessary 

to develop information to understand the relationship between 

patients arrivals, conditions, and demand for the pharmaceutical 

inventories. In Indonesia, the implementation of e-catalog system still 

causes some obstacles in terms of medicine availability. The direct 

appointment of the pharmaceutical factories and wholesalers has 

resulted production and distribution of drugs which are not optimal 

yet. What happens is the uncertainty in terms of the time order 

received (lead time) and the received quantity. Hence, the Hospital 

pharmacy (HP) must be able to respond to this by developing an 

inventory policy which are able to provide the sustainable 

pharmaceutical inventories. The objectives of this paper are to develop 

a multi-stage stochastic programming model to optimize the  

 

pharmaceutical inventory costs with uncertainty in demand, lead time 

and received quantity. This model assumes a continuous review policy, 

with a (Q, r) model for multi-products in one echelon pharmaceutical 

supply chain, i.e. a hospital. Stock out is overcome by backorder 

entirely, without considering loss sale. 
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INTRODUCTION 
Management of pharmaceutical services is a cycle of 
activities that includes selection, needs planning, 
procurement, acceptance, storage, distribution, 
destruction and withdrawal, control and administration. 
This management is administered by the Hospital 
Pharmacy (HP). Pharmaceutical management is needed 
to minimize waste of resources and mishandling of uses. 
The HP director must be able to develop inventory 
policies by considering uncertain demands, limited 
storage capacity, customer service level (CSL), patient 
safety and various regulations that may affect supply 
(Uthayakumar & Priyan, 2013). 
Demand for pharmaceutical products (Di) came from the 
doctor regarding the decisions on treatment for patients. 
The doctor will diagnose the disease, and then prescribe 
the medicine to be used. Pharmaceutical inventory 
planning is based on a patient population in the hospital 
that is uncertain and varies over time. As a result, 
demand becomes stochastic. It is therefore necessary to 
develop information in order to understand the 
relationship between the patient's arrival, his condition 
and the demand for pharmaceutical products. 
The health care system is challenged to deliver quality 
services at affordable prices. However, an increase in the 

prices of health products and services, including the 
availability of products and medical treatment, requires 
hospitals to reduce operating costs without affecting the 
quality of their services. Budgeted costs for the provision 
of pharmaceutical services (TCi) are the largest 
component of hospital expenditure. In many developing 
countries, the provision of pharmaceutical services in 
hospitals can absorb some 40-50 percentages of the total 
hospital costs. There is no doubt that the provision of 
such large pharmaceutical services must be managed 
effectively and efficiently, which is necessary given the 
need for funding to provide pharmaceutical services in 
hospitals is not always in line with the request. 
The pharmaceutical supply chain consists of the stage of 
production (drug factory), the stage of distribution 
(pharmaceutical wholesalers) and the stage of service 
(hospitals and pharmacies). The pharmaceutical supply 
chain is very complex and requires a great responsibility 
to ensure that the right product reaches the right person 
at the right time and maintains the quality of the product. 
The pharmaceutical supply chain must therefore fully 
reach the level of customer service (CSL) because it can 
directly affect the health and safety of patients. In 
Indonesia, various regulations have been established to 
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control prices, drug shortages and the suitability of drug 
use. 
In inventory management, the Economic Order Quantity 
(EOQ) model defines the order quantity (Q*) which 
minimizes inventory costs and total order costs. EOQ is 
only used when the demand for a product is constant 
throughout the year and every new order is fully 
delivered when the inventory is zero (I(t) = 0), assuming 
a constant lead time. Order costs remain constant 
irrespective of the number of units ordered. The model 
also takes into account storage costs as a percentage of 
purchase costs. However, this model does not allow for 
stock-outs, and demand that varies over time (dynamic) 
(Uthayakumar & Karuppasamy, 2018). Also, in reality, 
the number of requests and lead times often varies, and 
the amount received does not match the order 
(Bartmann & Beckmann, 1992). In order to overcome 
these problems, this EOQ model needs to be developed. 
The inventory is used to meet patient demand, so it is 
important to estimate the exact amount and timing of 
demands in the planning process. It is also important to 
know how long it will take until the order has been 
received, so as not to run out of stock (stockout). When 
demand is stochastic, lead time become the parameter 
that needs to be reduced. The usual lead time is reduced 
by paying more (penalty charges, cs) to the 
pharmaceutical wholesaler. 
Uthayakumar dan Priyan (2013) have developed an 
inventory model that integrates continuous review with 
production and distribution of supply chains related to 
drug factories and hospitals. This model considers 
multiple products, lead time variables, payment delays, 
limited storage space, and CSL. This model calculates the 
minimization of total inventory costs by taking decisions 
on the optimal order number (Qi), lead time (L) and 
number of shipments n for all products in a single cycle. 
However, this model does not take into consideration 
uncertainty about demand, lead time and number of 
received orders. 
In addition, Uthayakumar dan Karuppasamy (2018) 
developed a pharmaceutical inventory model by 
assuming demand as a quadratic function and storage 
costs as a linear function, where payment delays were 
allowed. This model is based on the backorder of some 
products. Priyan dan Uthayakumar (2014) developed 
the Uthayakumar dan Priyan (2013) models by adding 
uncertainty to the number of orders received. However, 
this model did not consider uncertainty about demand 
and lead time. 
With a variety of uncertain constraints in the real world, 
stochastic programming is used to model this 
uncertainty. The most commonly used stochastic 
programming is two-stage stochastic programming. 
Cunha et al. (2017) has developed a two-stage stochastic 
model for a single item in a single row, with uncertain 
demand. Approximate the solution using a mixed-integer 
programming model using a limited number of 
scenarios. However, this model considers a policy of 
periodic review. 

The aim of this study is to develop a multi-stage 
stochastic programming model to optimize the inventory 
costs of pharmaceutical products in hospitals in the 
presence of a number of uncertain factors, including 
demand, lead time and the number of received orders. 
 

MULTI-STAGE STOCHASTIC PROGRAM MODEL 
FOR PHARMACEUTICAL INVENTORY 
The stochastic program model is a branch of 
mathematics for situations where the decision contains 
data uncertainty. This model is used to construct 
mathematical formulations to determine the 
optimization of pharmaceutical inventory costs in 
hospitals with uncertainty in demand, lead time and 
number of received orders. 
 
Scenario of Inventory Problems in Hospitals 
The model is assumed to be three phases, each of which 
consists of decisions (scenarios) taken by HP, taking 
into account the overall cost efficiency. And decision-
making at each stage depends on the implementation of 
the previous stage. 
In the first stage, the decision is to determine the optimal 
order quantity (Qi) and the reorder point (ri) which 
minimizes the total inventory cost (TC). The second stage 
is a decision in the lead time. At this stage, if demand 
during lead time (Xi) exceeds expectations, where Xi > ri 
is expected, there will be a stock-out. This stock-out will 
be overturned with a fully back-order (not considering a 
loss sale). Although the number of orders in the first 
phase has taken into account demand and safety 
stock expectations, it is still possible to have a 
stockpiling. In the case of hospitals, it is not possible to 
leave unfulfilled demands (loss sale). Therefore, the 
stock-out must be overcome by a fully back-order. 
Backorder can be done on the same pharmaceutical 
wholesalers or on different ones. This depends on the 
level of drug requirements that pharmaceutical 
wholesalers can meet. Backorder may be received 
instantly or wait until it is delivered along with the 
previous order, in this case with an uncertain lead time. 
The third stage is a problem at the end of the cycle, where 
the number of orders received is known. If the amount 
received is equal to the order amount, this amount will 
become the initial inventory amount for the next cycle. 
If the amount received is less than the amount ordered, 
there are two possible conditions. First, if the type of 
drug is complete but the quantity is missing, this 
deficiency may be expected in accordance with the 
agreement as long as there is no storage or return to the 
first stage. Second, if the drug type is incomplete, then the 
back-order is what is done. 

𝑌𝑖 < 𝑄𝑖 → {
𝑖 < 𝑀; 𝑏𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟

𝑖 = 𝑀; 𝑜𝑟𝑑𝑒𝑟 (𝑄𝑖 , 𝑟𝑖)
 

This study considers a continuous review of the one-
echelon pharmaceutical supply chain, the hospital. The 
model has been developed for multi-products. The model 
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considers the limitations of storage capacity and CSL to 
be constraints, while the demand and lead time are 
assumed to be uncertain and the amount received does 
not match the order. 
 

MATHEMATICAL FORMULATION 
In general, this problem can be formulated as the 
following stochastic programming model: 
Stage I 

min 𝑇𝐶 = 𝑇𝐶1 + 𝐸[𝑇𝐶2] + 𝐸[𝑇𝐶3] (1) 

Subject to: 

𝐼(𝑡) ≥ 0; 0 ≤ 𝑡 ≤ 𝑡2 (2) 

𝑣 = {
0;       𝐼(𝑡) > 𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑛𝑜𝑡 𝑜𝑟𝑑𝑒𝑟𝑒𝑑

1;              𝐼(𝑡) ≤ 𝑟 ;  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑟𝑑𝑒𝑟𝑒𝑑
 

(3) 

𝑛 = ⌈
𝑄

𝑧
⌉ ≥ 1 

(4) 

0 ≤ 𝑇𝐶 ≤ 𝐶 (5) 
𝐶 = 𝐶1 + 𝐶2 (6) 
0 ≤ 𝑓 ≤ 𝑊 (7) 

𝐶, 𝐶1, 𝐶2, 𝐿, 𝑐𝑏 , ℎ > 0 (8) 
0 ≤ 𝜃 ≤ 1 (9) 
0 ≤ 𝑎 ≤ 1 (10) 

Description: 

TC = total cost 
𝑇𝐶1  = total cost in stage 1 
𝐸[𝑇𝐶2]= total cost expectation at stage 2 
𝐸[𝑇𝐶3]= total cost expectation at stage 3 
Eq. (2) guarantees the amount of inventory if t is not 
negative. Eq. (3) is a variable that decides whether or not 
to place an order. Eq. (4) ensures that the number of lots 
ordered is at least 1. Eq. (5) provides that the total costs 
incurred do not exceed the budget. Eq. (6) explains that 
the hospital budget is a hospital budget plus a bank loan. 
Eq. (7) ensures that the storage capacity of the drugs 
does not exceed the room capacity. Eq. (8) ensures that 
all budgets and costs are positive. Eq. (9) sets the 
expiration rate and Eq. (10) sets the interest rate for 
loans to banks. 
This stage occurs at interval [0, t2] (Figure 1), the 

decision is to determine the optimal order number (Qi) 

and the reorder point (ri) for product I which minimizes 

the total inventory cost (TC). Taking into account the 

uncertainty of demand and the length of time. 

 

Figure 1. Inventory Model (𝑄𝑖 , 𝑟𝑖) with Stochastic 

Demand and lead time 

Orders are requested when the inventory amount drops 
to reorder point (𝑟𝑖), where this point is determined by 
taking into account the demand rate during the lead time 
plus the safety stock, SS in order to avoid stock-out. The 
reorder point is formulated as follows: 

𝑟𝑖 = 𝐸[𝐷𝐿𝑖(𝑡)] + 𝑆𝑆𝛼𝑖
 (11) 

Description: 

𝑟𝑖  = reorder point product i 
𝐸[𝐷𝐿𝑖(𝑡)] = expectation of demand for product i during 
lead time 
𝑆𝑆𝛼𝑖

= 1 − 𝛼  = safety stock of the product 

i; with CSL 𝛼   = The opportunity for the 
product i cannot be fulfilled 

The total number of requests during the lead 
time is shown in Figure 1 as follows: 

𝐷𝐿𝑖(𝑡) = ∫ 𝐷𝑖(𝑡)𝑑𝑡
𝐿

𝑡=𝑡1
  

 

𝐸[𝐷𝑖(𝑡)] = 𝐸 [∫ 𝐷𝑖(𝑡)𝑑𝑡
𝐿

𝑡=𝑡1
]   

𝐸[𝐷𝑖(𝑡)] = 𝐸[𝐿]. {𝐸[𝐷𝑖(𝑡)] [∫ 𝐷𝑖(𝑡)𝑑𝑡
𝑛

𝑡=𝑡1
| 𝐿 = 𝑛]}   

𝐸[𝐷𝑖(𝑡)] = 𝐸[𝐿] {∫ 𝐸[𝐷𝑖(𝑡)]
𝑛

𝑡=𝑡1
| 𝐷𝑖(𝑡)|𝐿 = 𝑛}   

It is assumed that stochastic demand is normally 

distributed; 𝐷𝐿𝑖(𝑡)~𝑁(𝜇𝐷𝐿𝑖
, 𝜎𝐷𝐿𝑖

2 ) 

𝐸[𝐷𝑖(𝑡)] = 𝐸[𝐿] (∫ 𝜇𝐷𝑖
(𝑡)𝑑𝑡

𝐿

𝑡=𝑡1
)  

𝐸[𝐷𝑖(𝑡)] = 𝐸[𝐿][𝐿. 𝜇𝐷𝑖
]  

𝐸[𝐷𝑖(𝑡)] = 𝜇𝐷𝑖
𝜇𝐿  

The amount of the stock-out shall be specified as 

𝛼𝑖 = 𝑃(𝐷𝐿𝑖(𝑡) > 𝑟𝑖) 

The following is obtained from Equation (11) 

𝛼𝑖 = 𝑃(𝐷𝐿𝑖(𝑡) > 𝐸[𝐷𝐿𝑖(𝑡)] + 𝑆𝑆𝛼𝑖
) 

𝛼𝑖 = 𝑃 (𝑍 >
(𝐸[𝐷𝐿𝑖(𝑡)] + 𝑆𝑆𝛼𝑖

) − 𝐸[𝐷𝐿𝑖(𝑡)]

√𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)]
) 

𝛼𝑖 = 𝑃 (𝑍 >
𝑆𝑆𝛼𝑖

√𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)]
) 

Let 𝑍 = 𝑍𝛼𝑖
, then 

𝑍𝛼𝑖
=

𝑆𝑆𝛼𝑖

√𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)]
   

Inventory Number 

Ti

m

Q

r

S

t t

Order ordered Order received 

L 



Afnaria et al.: An Optimization Model for Hospitals Inventory Management in Pharmaceutical 

Supply Chain 

 

327                                                                                   Systematic Reviews in Pharmacy      Vol 11, Issue 3, Mar-Apr, 2020 

 

𝑆𝑆𝛼𝑖
= 𝑍𝛼𝑖

√𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)]  (13) 

 

Furthermore, from the equation 𝐷𝐿𝑖(𝑡) = ∫ 𝐷𝑖(𝑡)𝑑𝑡
𝐿

𝑡=𝑡1
, 

the variance is determined as follows: 

𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)] = 𝑉𝑎𝑟 [∫ 𝐷𝑖(𝑡)𝑑𝑡
𝐿

𝑡=𝑡1

]

= 𝐸 [(∫ 𝐷𝑖(𝑡)𝑑𝑡
𝐿

𝑡=𝑡1

)

2

]

− (𝐸 [∫ 𝐷𝑖(𝑡)𝑑𝑡
𝐿

𝑡=𝑡1

])

2

 

 

It is assumed that stochastic lead times are normally 

distributed; ~𝑁(𝜇𝐿, 𝜎𝐿
2) , then: 

𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)] =

𝐸[𝐿]. [𝐸[𝐷𝑖(𝑡)] [(∫ 𝐷𝑖(𝑡)𝑑𝑡
𝐿

𝑡=𝑡1
)

2
]] − (𝜇𝐷𝑖

𝜇𝐿)
2

  

 

𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)] =

𝐸[𝐿]. [𝐸[𝐷𝑖(𝑡)] [(∫ 𝐷𝑖(𝑡)𝑑𝑡
𝑛

𝑡=𝑡1
)

2
| 𝐿 = 𝑛]] −

(𝜇𝐷𝑖
𝜇𝐿)

2
  

 

𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)] = 𝐸[𝐿] [𝑉𝑎𝑟[𝐷𝑖(𝑡)] [(∫ 𝐷𝑖(𝑡)𝑑𝑡
𝑛

𝑡=𝑡1
)

2
| 𝐿 =

𝑛] + (𝐸[𝐷𝑖(𝑡)] [∫ 𝐷𝑖(𝑡)𝑑𝑡
𝐿

𝑡=𝑡1
| 𝐿 = 𝑛])

2
] − (𝜇𝐷𝑖

𝜇𝐿)
2

  

 

𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)] = 𝐸[𝐿] [𝑉𝑎𝑟[𝐷𝑖(𝑡)] [∫ 𝐷𝑖(𝑡)𝑑𝑡
𝑛

𝑡=𝑡1
| 𝐿 = 𝑛]] +

𝐸[𝐿] [(∫ 𝐷𝑖(𝑡)𝑑𝑡
𝐿

𝑡=𝑡1
| 𝐿 = 𝑛)

2
] − (𝜇𝐷𝑖

𝜇𝐿)
2

  

 

𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)] = 𝐸[𝐿] [∫ 〖𝑉𝑎𝑟[𝐷𝑖(𝑡)〗𝐷𝑖(𝑡)][𝐷𝑖(𝑡)|𝐿 =
𝑛

𝑡=𝑡1

𝑛] + 𝐸[𝐿] [(∫ (𝐷𝑖(𝑡)|𝐿 = 𝑛)
𝑛

𝑡=𝑡1
)

2
]] − (𝜇𝐷𝑖

𝜇𝐿)
2

  

 

𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)] = 𝐸[𝐿][𝑛. 𝜎𝐷𝑖(𝑡)
2 |𝐿 = 𝑛] +

𝐸[𝐿] [(𝑛𝜇𝐷𝑖(𝑡)|𝐿 = 𝑛)
2

] − (𝜇𝐷𝑖
𝜇𝐿)

2
  

 

𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)] = 𝐸[𝐿][𝐿. 𝜎𝐷𝑖(𝑡)
2 ] + 𝐸[𝐿] [(𝐿𝜇𝐷𝑖(𝑡))

2
] −

(𝜇𝐷𝑖
𝜇𝐿)

2
  

 

𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)] = 𝜇𝐿𝜎𝐷𝑖(𝑡)
2 + 𝜇𝐷𝑖(𝑡)

2 𝐸[𝐿]. 𝐿2 − (𝜇𝐷𝑖
𝜇𝐿)

2
  

𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)] = 𝜇𝐿𝜎𝐷𝑖(𝑡)
2 + 𝜇𝐷𝑖(𝑡)

2 (𝜎𝐿
2 + 𝜇𝐿

2) − (𝜇𝐷𝑖
𝜇𝐿)

2
  

𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)] = 𝜇𝐿𝜎𝐷𝑖(𝑡)
2 + 𝜇𝐷𝑖(𝑡)

2 𝜎𝐿
2 + 𝜇𝐿

2𝜇𝐷𝑖(𝑡)
2 − 𝜇𝐿

2𝜇𝐷𝑖(𝑡)
2   

𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)] = 𝜇𝐿𝜎𝐷𝑖(𝑡)
2 + 𝜇𝐷𝑖(𝑡)

2 𝜎𝐿
2 (14) 

From equation (11)-(14), the reorder point of product i 

is obtained as: 

𝑟𝑖 = 𝐸[𝐷𝐿𝑖(𝑡)] + 𝑆𝑆𝛼𝑖
   

𝑟𝑖 = 𝜇𝐷𝑖
𝜇𝐿 + 𝑍𝛼𝑖

√𝑉𝑎𝑟[𝐷𝐿𝑖(𝑡)]   

𝑟𝑖 = 𝜇𝐷𝑖(𝑡)𝜇𝐿 + 𝑍𝛼𝑖
√𝜇𝐿𝜎𝐷𝑖(𝑡)

2 + 𝜇𝐷𝑖(𝑡)
2 𝜎𝐿

2 
(15) 

Whereas the order amount is determined as: 

𝑄𝑖 = 𝜇𝐷𝑖
. 𝑇 (16) 

The purchase price for a number of 𝑄𝑖 is 

𝑐𝑏𝑖 . 𝑣𝑖 . 𝑄𝑖 = 𝑐𝑏𝑖 . 𝑣𝑖 . 𝜇𝐷𝑖
. 𝑇 (17) 

Description: 

𝑣𝑖  = decision variable for purchasing product i,  

𝑣𝑖 = {
0; 𝐼𝑖(𝑡) > 𝑟𝑖  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑛𝑜𝑡 𝑜𝑟𝑑𝑒𝑟𝑒𝑑

1; 𝐼𝑖(𝑡) ≤ 𝑟𝑖;  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑜𝑟𝑑𝑒𝑟𝑒𝑑
 

Ordering cost = 𝑐𝑜𝑖 . 𝑣𝑖 ⌈
𝑄𝑖

𝑧𝑖
⌉ = 𝑐𝑜𝑖 . 𝑣𝑖 . 𝑛𝑖  (18) 

Description: 
𝑧𝑖  = maximum number of packs per lot 
𝑛𝑖  = number of lots for each product i 
In addition, products that are not sold during this period 
will incur storage charges. The number of product i that 
are not sold is formulated as follows: 

∫ {𝐼𝑖(𝑡) − 𝐸[𝐷𝑖(𝑡)]}𝑑𝑡
𝑡2

0

= ∫ (𝐼𝑖(𝑡) − 𝜇𝐷𝑖(𝑡))𝑑𝑡
𝑡2

0

  

The storage costs for product i per unit time are 

therefore as follows: 

ℎ𝑖 [∫ (𝐼𝑖(𝑡) − 𝜇𝐷𝑖(𝑡))𝑑𝑡
𝑡2

0

] (19) 

In addition, if it is assumed that the capital held by the 
hospital is the accumulation of hospital funds and loan 
funds, in this case: 

𝐶 = 𝐶1 + 𝐶2 

Description: 

𝐶1 = hospital funds themselves  
𝐶2 = loan funds to the bank, with a loan interest of 
a per unit time 
The interest expense will then be: 𝑎𝐶2. If this interest 
expense is charged for all items in the hospital inventory 
and the selling price of each drug has taken into account 
the interest and profit margins, then the product that is 
still subject to the interest expense in the inventory is the 
unsold product. Interest expense is therefore 
determined as: 

𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

{∫ 𝐼𝑖(𝑡) − 𝜇𝐷𝑖(𝑡)𝑑𝑡
𝑡2

0

} 

And from eq. (9), the total cost of the unsold product is as 

follows: 

[ℎ𝑖 +
𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] {∫ 𝐼𝑖(𝑡) − 𝜇𝐷𝑖(𝑡)𝑑𝑡
𝑡2

0

} (20) 

 

Products which have expired during this period include: 

∫ 𝜃𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

 

Consequently, the costs due to expired products are as 

follows: 

[𝑐𝑏𝑖 +
𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] ∫ 𝜃𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

 (21) 

Thus, for stage I, from equation (17) to (21), the total cost 
of inventory of the product i is formulated as: 

𝑇𝐶1𝑖 = 𝑝𝑢𝑟𝑐𝑎𝑠ℎ𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 + 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡
+ ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡
+ 𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 
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𝑇𝐶1𝑖 = 𝑐𝑏𝑖 . 𝑣𝑖 . 𝜇𝐷𝑖
. 𝑇 + 𝑐𝑏𝑖 . 𝑣𝑖 . 𝑛𝑖 + [ℎ𝑖 +

𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] {∫ 𝐼𝑖(𝑡) − 𝜇𝐷𝑖(𝑡)𝑑𝑡
𝑡2

0
} + [𝑐𝑏𝑖 +

𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] ∫ 𝜃𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0
  

(22) 

And the total cost of inventory for all products is as 

follows: 

𝑇𝐶1𝑖 = ∑ {𝑐𝑏𝑖 . 𝑣𝑖 . 𝜇𝐷𝑖
. 𝑇 + 𝑐𝑏𝑖 . 𝑣𝑖 . 𝑛𝑖 +𝑀

𝑖=1

[ℎ𝑖 +
𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] {∫ 𝐼𝑖(𝑡) − 𝜇𝐷𝑖(𝑡)𝑑𝑡
𝑡2

0
} + [𝑐𝑏𝑖 +

𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] ∫ 𝜃𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0
}  

(23) 

Thus, the objective function is: 

min 𝑇𝐶1 = min ∑ {𝑐𝑏𝑖 . 𝑣𝑖 . 𝜇𝐷𝑖
. 𝑇 +𝑀

𝑖=1

𝑐𝑜𝑖 . 𝑣𝑖 . 𝑛𝑖 + [ℎ𝑖 +
𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] {∫ 𝐼𝑖(𝑡) −
𝑡2

0

𝜇𝐷𝑖(𝑡)𝑑𝑡} + [𝑐𝑏𝑖 +
𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] ∫ 𝜃𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0
}  

(24) 

 

Subject to: 
𝐼𝑖(𝑡) ≥ 0; 0 ≤ 𝑡 ≤ 𝑡2; 𝑖 = 1,2, … , 𝑀 (25) 

𝑣𝑖 = {
0; 𝐼𝑖(𝑡) > 𝑟𝑖  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑛𝑜𝑡 𝑜𝑟𝑑𝑒𝑟𝑒𝑑

1; 𝐼𝑖(𝑡) ≤ 𝑟𝑖;  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑜𝑟𝑑𝑒𝑟𝑒𝑑
 (26) 

𝑛𝑖 = ⌈
𝑄𝑖

𝑧𝑖
⌉ ≥ 1 (27) 

0 ≤ 𝑇𝐶 ≤ 𝐶 (28) 
𝐶 = 𝐶1 + 𝐶2 (29) 

0 ≤ ∑ 𝑓𝑖 ≤ 𝑊

𝑀

𝑖=1

 (30) 

𝐶, 𝐶1, 𝐶2, 𝐿, 𝑐𝑏𝑖 , ℎ𝑖 > 0 (31) 
0 ≤ 𝜃𝑖 ≤ 1 (32) 
0 ≤ 𝑎 ≤ 1 (33) 

Description: 

TC  = total cost 
𝑇𝐶1 = total cost in stage 1; 
𝐸[𝑇𝐶2] = total cost expectation at stage 2; 
𝐸[𝑇𝐶3] = total cost expectation at stage 3. 
Eq. (25) guarantees the amount of inventory if t is not 
negative. Eq. (26) is a variable that decides whether or 
not to place an order. Eq. (27) ensures that the number 
of lots ordered is at least 1. Eq. (28) provides that the 
total costs incurred do not exceed the budget. Eq. (29) 
explains that the hospital budget is a hospital budget plus 
a bank loan. Eq. (30) ensures that the storage capacity of 
the drug does not exceed the capacity of the room. Eq. 
(31) ensures that all budgets and costs are positive. Eq. 
(32) sets the expiration rate and Eq. (33) sets the interest 
rate on loans to banks. 
Stage II 

This stage can be formulated as a stochastic 

programming model as follows: 

min 𝜉1 = 𝑇𝐶2 + 𝐸[𝑇𝐶3] (35) 
Subject to: 

∑ 𝐼𝑠𝑖(𝑡)

𝑀

𝑖=1

≤ 𝑆𝑖𝑚𝑎𝑘𝑠 (36) 

0 ≤ 𝑇𝐶𝑠 ≤ 𝐶 (37) 
𝐼𝑠𝑖(𝑡) < 0; 𝑡2 ≤ 𝑡 ≤ 𝑡3; 𝑖 = 1,2, … , 𝑀 (38) 

𝑣𝑖 = {
0; 𝐼𝑖(𝑡) > 𝑟𝑖  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑛𝑜𝑡 𝑜𝑟𝑑𝑒𝑟𝑒𝑑

1; 𝐼𝑖(𝑡) ≤ 𝑟𝑖;  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑜𝑟𝑑𝑒𝑟𝑒𝑑
 (39) 

𝑛𝑖 = ⌈
𝑄𝑖

𝑧𝑖
⌉ ≥ 1 (40) 

0 ≤ 𝑇𝐶 ≤ 𝐶 (41) 

0 ≤ ∑ 𝑓𝑖 ≤ 𝑊

𝑀

𝑖=1

 (42) 

𝑐𝑠𝑖 > 𝑐𝑏𝑖 > 0 (43) 
𝐶, 𝐿, 𝑐𝑠𝑖 , ℎ𝑖 > 0 (44) 
0 ≤ 𝛼𝑖 ≤ 1 (45) 

The [𝑡1, 𝑡3] interval (Figure 1) is the lead time period. At 
this stage, if demand during lead time (Xi) exceeds 
expectations, where Xi > ri is expected, there will be a 
stock-out. This stock-out will be overturned with a 
complete backordered (not considering a loss sale). The 
challenge at this stage is uncertainty about lead time and 
demand. 
In addition, if there is a stock-out at interval [𝑡2, 𝑡3], in 
this case 𝑋𝑖 > 𝑟𝑖, then a backorder will be made for all 
products i experiencing stock-out. The maximum 
amount of stock-out allowed depends on the hospital 
level service (CSL) policy, where 𝐶𝑆𝐿 = 1 − 𝛼. 
There are two backorder scenarios at this stage, namely: 

1. Products are received on the same day. 
That is, the purchase of the drug i-th that had been 
stored on the same day was received. 
The purchase price of the product with this 
backorder is specified as 𝑐𝑠𝑖 > 𝑐𝑏𝑖 . 
The number of products i order is as follows: 

𝐼𝑠𝑖(𝑡) = − ∫ 𝑋𝑖(𝑡) − 𝑟𝑖𝑑𝑡
𝑡3

𝑡=𝑡2

 (46) 

Purchase price of the whole product i backorder: 

𝑐𝑠𝑖𝑣𝑖 [− ∫ 𝑋𝑖(𝑡) − 𝑟𝑖𝑑𝑡
𝑡3

𝑡=𝑡2

] (47) 

 

Figure 2: Inventory Model with Stochastic 

Demand and Lead Time When Stock Out 

t2 t3 

S
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The total cost of the backorder for the product i is 
therefore: 

𝑇𝐶𝑠𝑖 = 𝑏𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑐𝑜𝑠𝑡
+ 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 

 

𝑇𝐶𝑠𝑖 = 𝑐𝑠𝑖𝑣𝑖 [− ∫ 𝑋𝑖(𝑡) − 𝑟𝑖𝑑𝑡
𝑡3

𝑡=𝑡2
] +

𝑐𝑜𝑖 . 𝑣𝑖 . 𝑛𝑖   
(49) 

 
And the total cost of all products during the lead 

time when stock-out is as follows: 

𝑇𝐶𝑠 = ∑ [𝑐𝑠𝑖𝑣𝑖 [− ∫ 𝑋𝑖(𝑡) −
𝑡3

𝑡=𝑡2

𝑀
𝑖=1

𝑟𝑖𝑑𝑡] + 𝑐𝑜𝑖 . 𝑣𝑖 . 𝑛𝑖  ]  
(50) 

Next, the objective function is defined as: 

𝑚𝑖𝑛 𝑇𝐶𝑠 =

min {∑ [𝑐𝑠𝑖𝑣𝑖 [− ∫ 𝑋𝑖(𝑡) − 𝑟𝑖𝑑𝑡
𝑡3

𝑡=𝑡2
] +𝑀

𝑖=1

𝑐𝑜𝑖 . 𝑣𝑖 . 𝑛𝑖  ]}  

(51) 

Subject to: 

∑ 𝐼𝑠𝑖(𝑡)

𝑀

𝑖=1

≤ 𝑆𝑖𝑚𝑎𝑘𝑠 (52) 

0 ≤ 𝑇𝐶𝑠 ≤ 𝐶 (53) 
𝐼𝑠𝑖(𝑡) < 0; 𝑡2 ≤ 𝑡 ≤ 𝑡3; 𝑖 = 1,2, … , 𝑀 (54) 
𝑣𝑖 =

{
0; 𝐼𝑖(𝑡) > 𝑟𝑖  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑛𝑜𝑡 𝑜𝑟𝑑𝑒𝑟𝑒𝑑

1; 𝐼𝑖(𝑡) ≤ 𝑟𝑖;  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑜𝑟𝑑𝑒𝑟𝑒𝑑
  

(55) 

𝑛𝑖 = ⌈
𝑄𝑖

𝑧𝑖
⌉ ≥ 1 (56) 

0 ≤ 𝑇𝐶 ≤ 𝐶 (57) 

0 ≤ ∑ 𝑓𝑖 ≤ 𝑊

𝑀

𝑖=1

 (58) 

𝑐𝑠𝑖 > 𝑐𝑏𝑖 > 0 (59) 
𝐶, 𝐿, 𝑐𝑠𝑖 , ℎ𝑖 > 0 (60) 

2. Products are received at the same time as the 
previous order (Order 𝑄𝑖) 
That is, this backorder is experiencing uncertainty 
in terms of lead time. As a result, the number of 
demand during the lead time is also uncertain. 
Assuming demand during lead time 𝑋𝑖   is 
stochastic, which is normally distributed; 

𝑋𝑖~𝑁(𝜇𝑋𝑖
, 𝜎𝑋𝑖

2 ). 

Suppose the hospital service level is as: 1 − 𝛼. 
Then, the opportunity for a stock-out for the 
product i is: 

𝛼𝑖 = 𝑃(𝑋𝑖 > 𝑟𝑖) (61) 
so, the backorder number is determined as: 

 𝐼𝑠𝑖(𝑡) =
(𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒). 𝑃(𝑋𝑖 >
𝑟𝑖) 

 

𝐼𝑠𝑖(𝑡) = 𝐸[𝑋𝑖]. 𝛼𝑖   (62) 
Next, 

𝐸[𝑋𝑖] = 𝐸 [∫ 𝑋𝑖(𝑡)𝑑𝑡
𝐿

𝑡2
]   

𝐸[𝑋𝑖] = 𝐸[𝐿]. 𝐸[𝑋𝑖(𝑡)] {∫ 𝑋𝑖(𝑡)𝑑𝑡
𝑚

𝑡2
| 𝐿 = 𝑚}   

𝐸[𝑋𝑖] = 𝐸[𝐿]. [∫ 𝐸[𝑋𝑖(𝑡)]𝑑𝑡
𝑚

𝑡2
| 𝑋𝑖(𝑡)|𝐿 = 𝑚]   

𝐸[𝑋𝑖] = 𝐸[𝐿]. [∫ 𝜇𝑋𝑖(𝑡)𝑑𝑡
𝐿

𝑡2
]   

𝐸[𝑋𝑖] = 𝐸[𝐿]. [𝐿. 𝜇𝑋𝑖
]   

𝐸[𝑋𝑖] = 𝜇𝑋𝑖
. 𝜇𝐿   (63) 

From Equations (62) and (63) obtained 

𝐼𝑠𝑖(𝑡) = 𝜇𝑋𝑖
𝜇𝐿. 𝛼𝑖  (64) 

The purchase price of the product i backorder is: 

𝑐𝑠𝑖𝑣𝑖(𝜇𝑋𝑖
𝜇𝐿 . 𝛼𝑖) (65) 

The shipping cost for product i is: 

𝑐0𝑖 . 𝑣𝑖 . ⌈
𝑄𝑖

𝑧𝑖
⌉ = 𝑐𝑜𝑖 . 𝑣𝑖 . 𝑛𝑖  (66) 

The total backorder fee for the product i is: 

𝑇𝐶2𝑖 = 𝑐𝑠𝑖𝑣𝑖(𝜇𝑋𝑖
𝜇𝐿. 𝛼𝑖) + 𝑐𝑜𝑖 . 𝑣𝑖 . 𝑛𝑖  (67) 

Therefore, the total backorder cost for all products 

is: 

𝑇𝐶2 = ∑{𝑐𝑠𝑖𝑣𝑖(𝜇𝑋𝑖
𝜇𝐿. 𝛼𝑖) + 𝑐𝑜𝑖 . 𝑣𝑖 . 𝑛𝑖}

𝑀

𝑖=1

 (68) 

 

The objective function is defined as: 

min 𝜉1 = min[∑ {𝑐𝑠𝑖𝑣𝑖(𝜇𝑋𝑖
𝜇𝐿 . 𝛼𝑖) +𝑀

𝑖=1

𝑐𝑜𝑖 . 𝑣𝑖 . 𝑛𝑖}]  
(69) 

Subject to: 

∑ 𝐼𝑠𝑖(𝑡)

𝑀

𝑖=1

≤ 𝑆𝑖𝑚𝑎𝑘𝑠 (70) 

0 ≤ 𝑇𝐶𝑠 ≤ 𝐶 (71) 

𝐼𝑠𝑖(𝑡) < 0; 𝑡2 ≤ 𝑡 ≤ 𝑡3; 𝑖 = 1,2, … , 𝑀 (72) 

𝑣𝑖

= {
0; 𝐼𝑖(𝑡) > 𝑟𝑖  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑛𝑜𝑡 𝑜𝑟𝑑𝑒𝑟𝑒𝑑

1; 𝐼𝑖(𝑡) ≤ 𝑟𝑖;  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑜𝑟𝑑𝑒𝑟𝑒𝑑
 

(73) 

𝑛𝑖 = ⌈
𝑄𝑖

𝑧𝑖
⌉ ≥ 1 (74) 

0 ≤ 𝑇𝐶 ≤ 𝐶 (75) 

0 ≤ ∑ 𝑓𝑖 ≤ 𝑊

𝑀

𝑖=1

 (76) 

𝑐𝑠𝑖 > 𝑐𝑏𝑖 > 0 (77) 

𝐶, 𝐿, 𝑐𝑠𝑖 , ℎ𝑖 > 0 (78) 

0 ≤ 𝛼𝑖 ≤ 1 (79) 
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Description: 

Eq. (70) requires that the number of stock-outs does not 
exceed the maximum number of stock-outs allowed 
under the Hospital CSL policy. Eq. (71) ensures that the 
total cost of stock-outs does not exceed the budget. Eq. 
(72) shows that the stock is calculated in [𝑡2, 𝑡3] 
intervals. Eq. (73) is a variable that decides whether or 
not to place an order. Eq. (74) shows the minimum 
number of batches 1. Eq. (75) shows that the total cost of 
inventories does not exceed the budget. Eq. (76) shows 
that the total capacity does not exceed the room capacity. 
Eq. (77) shows a penalty fee due to a stock out exceeding 
the normal purchase costs. Eq. (78) shows that the 
budget, lead time, penalty fees and storage costs are 
positive. Eq. (79) shows the probability of a stock-out 
occurring between 0 and 1. 
Stage III 

This stage can be formulated as: 

min 𝜉2 = 𝐸[𝑇𝐶3] (80) 
Subject to: 

𝐼𝑖(𝑡) ≥ 0; 0 ≤ 𝑡 ≤ 𝑡2; 𝑖 = 1,2, … , 𝑀 (81) 

𝑣𝑖 = {
0; 𝐼𝑖(𝑡) > 𝑟𝑖  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑛𝑜𝑡 𝑜𝑟𝑑𝑒𝑟𝑒𝑑

1; 𝐼𝑖(𝑡) ≤ 𝑟𝑖;  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑜𝑟𝑑𝑒𝑟𝑒𝑑
 (82) 

𝑛𝑖 = ⌈
𝑌𝑖

𝑧𝑖
⌉ ≥ 1 (83) 

0 ≤ 𝑇𝐶 ≤ 𝐶 (84) 
𝐶 = 𝐶1 + 𝐶2 (85) 

0 ≤ ∑ 𝑓𝑖 ≤ 𝑊

𝑀

𝑖=1

 (86) 

𝐶, 𝐶1, 𝐶2, 𝐿, 𝑐𝑏𝑖 , ℎ𝑖 > 0 (87) 
0 ≤ 𝜃𝑖 ≤ 1 (88) 
0 ≤ 𝛼𝑖 ≤ 1 (89) 
0 ≤ 𝑎 ≤ 1 (90) 

Description: 

𝐸[𝑇𝐶3]  = Total cost expectations in stage III 

Eq. (81) shows that the amount of inventory is positive. 
Eq. (82) is a variable that decides whether or not to place 
an order. Eq. (83) shows the number of batches ordered 
at least 1. Eq. (84) shows that the total cost does not 
exceed the budget. Eq. (85) shows that the budget 
consists of hospital and bank loans. Eq. (86) shows that 
the capacity of the product does not exceed the capacity 
of the room. Eq. (87) shows that the budget, lead time, 
purchase and storage costs are positive. Eqs. (88)-(90) 
shows the expiration rate, stock-out and bank interest 
rates between 0 and 1. 
This stage is the stage at which the realization of the 
demand, the lead time and the number of orders received 
are known, i.e. 𝑡 = 𝑡3. If the amount received by 𝑌𝑖   
matches the order 𝑌𝑖 = 𝑄𝑖  this will be the initial 
inventory amount for the next cycle. 
If the amount received (𝑌𝑖)  is smaller than the order, i.e. 

𝑌𝑖 < 𝑄𝑖, where: 

𝑌𝑖 < 𝑄𝑖 → {
𝑖 < 𝑀; backorder

𝑖 = 𝑀; 𝑜𝑟𝑑𝑒𝑟 (𝑄𝑖 , 𝑟𝑖)
 (91) 

It is assumed that the amount received depends on the 

amount ordered (Uthayakumar & Priyan, 2013), written 

as: 

𝐸[𝑌𝑖|𝑄𝑖] = 𝜏𝑖𝑄𝑖 (92) 
Description: 

𝜏𝑖  = bias factor amount received against the 

ordered amount; 0 ≤ 𝜏𝑖 ≤ 1 

Where the variance of the number of products i received 

is determined as: 

𝑣𝑎𝑟(𝑌𝑖) = 𝜎𝑖1
2 + 𝜎𝑖2

2 𝑄𝑖
2 (93) 

Description: 

𝜎𝑖1
2 , 𝜎𝑖2

2 > 0; 𝜎𝑖1
2 ≫ 𝜎𝑖2

2  

For product i, if 𝜎𝑖2
2 = 0, then the standard deviation of 

the amount received does not depend on the amount 
ordered, and if 𝜎𝑖1

2 = 0, then the standard deviation of the 
amount received is proportional to the amount ordered. 
Thus from Equation (73), obtained: 

𝑇𝐶3 = ∑ {𝑐𝑏𝑖𝑣𝑖 . 𝑌𝑖 + 𝑐𝑏𝑖 . 𝑣𝑖 . ⌈
𝑌𝑖

𝑧𝑖
⌉ + [ℎ𝑖 +𝑀

𝑖=1

𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] ∫ {𝐼𝑖(𝑡) −
∫ 𝐷𝑖(𝑡)𝑑𝑡

𝑡2
0

𝑇
} 𝑑𝑡

𝑡2

0
+ [𝑐𝑏𝑖 +

𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] ∫ 𝜃𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0
}  

(94) 

Next, 

𝐸[𝑌𝑖|𝑄𝑖]

𝐷𝑖(𝑡)
=

𝜏𝑖𝑄𝑖

𝐷𝑖(𝑡)
 

(95) 

From Equation (91), 

𝐸[𝑌𝑖] = 𝐸[𝑌𝑖
2] − [𝐸[𝑌𝑖]]2  

𝜎𝑖1
2 + 𝜎𝑖2

2 𝑄𝑖
2 = 𝐸[𝑌𝑖

2] − [𝐸[𝑌𝑖]]2  

𝜎𝑖1
2 + 𝜎𝑖2

2 𝑄𝑖
2 = 𝐸[𝑌𝑖

2] − 𝜏𝑖
2𝑄𝑖

2  

𝐸[𝑌𝑖
2] = 𝜎𝑖1

2 + (𝜎𝑖2
2 + 𝜏𝑖

2)𝑄𝑖
2  

𝐸[𝑌𝑖|𝑄𝑖] = 𝜎𝑖1
2 + (𝜎𝑖2

2 + 𝜏𝑖
2)𝑄𝑖

2 (96) 
Thus obtained from Equations (91) and (96): 

𝐸[𝑇𝐶3𝑖|𝑄𝑖] = ∑ {𝑐𝑏𝑖𝑣𝑖 . 𝑌𝑖 + 𝑐𝑏𝑖 . 𝑣𝑖 . ⌈
𝑌𝑖

𝑧𝑖
⌉ +𝑀

𝑖=1

[ℎ𝑖 +
𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

]
𝐸[𝑌𝑖

2|𝑄𝑖]

∫ {𝐼𝑖(𝑡)−
∫ 𝐷𝑖(𝑡)𝑑𝑡

𝑡2
0

𝑇
}𝑑𝑡

𝑡2
0

+

𝐸[𝑌𝑖
2|𝑄𝑖] [𝑐𝑏𝑖 +

𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] ∫ 𝜃𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0
}  
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𝐸[𝑇𝐶3𝑖|𝑄𝑖] = ∑ {𝑐𝑏𝑖𝑣𝑖 . 𝑌𝑖 + 𝑐𝑏𝑖 . 𝑣𝑖 . ⌈
𝑌𝑖

𝑧𝑖
⌉ +𝑀

𝑖=1

[ℎ𝑖 +
𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

]
𝜎𝑖1

2 +(𝜎𝑖2
2 +𝜏𝑖

2)𝑄𝑖
2

∫ {𝐼𝑖(𝑡)−
∫ 𝐷𝑖(𝑡)𝑑𝑡

𝑡2
0

𝑇
}𝑑𝑡

𝑡2
0

+

(𝜎𝑖1
2 + (𝜎𝑖2

2 + 𝜏𝑖
2)𝑄𝑖

2) [𝑐𝑏𝑖 +

𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] ∫ 𝜃𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0
}  

(97) 

From the renewal reward theorem, the expected total 

cost for product i is obtained as: 

𝐸[𝑇𝐶3𝑖] =
𝐸[𝑇𝐶(𝑌𝑖|𝑄𝑖)]

𝐸[𝑌𝑖|𝑄𝑖]
𝐷𝑖(𝑡)

 

So, from Equations (92), (96) and (97), we get: 

𝐸[𝑇𝐶3𝑖] =
𝐷𝑖(𝑡)(𝑐𝑏𝑖𝑣𝑖.𝑌𝑖+𝑐𝑏𝑖.𝑣𝑖.⌈

𝑌𝑖
𝑧𝑖

⌉)

𝜏𝑖𝑄𝑖
+

[ℎ𝑖+
𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2
0

][𝜎𝑖1
2 +(𝜎𝑖2

2 +𝜏𝑖
2)𝑄𝑖

2]

2𝜏𝑖𝑄𝑖
+ (𝜎𝑖1

2 + (𝜎𝑖2
2 +

𝜏𝑖
2)𝑄𝑖

2) [𝑐𝑏𝑖 +
𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] {∫ 𝜃𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0
} +

𝑐𝑠𝑖.𝑣𝑖 ∫ −𝛼𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡3

𝑡2

𝜏𝑖𝑄𝑖
  

(98) 

Next, the expected total cost for all products is: 

𝐸[𝑇𝐶3] = ∑ {
𝐷𝑖(𝑡)(𝑐𝑏𝑖𝑣𝑖.𝑌𝑖+𝑐𝑏𝑖 .𝑣𝑖.⌈

𝑌𝑖
𝑧

⌉)

𝜏𝑖𝑄𝑖
+𝑀

𝑖=1

[ℎ𝑖+
𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2
0

][𝜎𝑖1
2 +(𝜎𝑖2

2 +𝜏𝑖
2)𝑄𝑖

2]

2𝜏𝑖𝑄𝑖
+ (𝜎𝑖1

2 + (𝜎𝑖2
2 +

𝜏𝑖
2)𝑄𝑖

2) [𝑐𝑏𝑖 +
𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] {∫ 𝜃𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0
} +

𝑐𝑠𝑖.𝑣𝑖 ∫ −𝛼𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡3

𝑡2

𝜏𝑖𝑄𝑖
}  

(99) 

 

 

 

 

The objective functions are: 

min 𝜉1 = 𝐸[𝑇𝐶3]  

𝑚𝑖𝑛 𝐸[𝑇𝐶3] =

min [∑ {
𝐷𝑖(𝑡)(𝑐𝑏𝑖𝑣𝑖.𝑌𝑖+𝑐𝑏𝑖.𝑣𝑖.⌈

𝑌𝑖
𝑧𝑖

⌉)

𝜏𝑖𝑄𝑖
+𝑀

𝑖=1

[ℎ𝑖+
𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2
0

][𝜎𝑖1
2 +(𝜎𝑖2

2 +𝜏𝑖
2)𝑄𝑖

2]

2𝜏𝑖𝑄𝑖
+ (𝜎𝑖1

2 + (𝜎𝑖2
2 +

𝜏𝑖
2)𝑄𝑖

2) [𝑐𝑏𝑖 +
𝑎𝐶2

∫ 𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0

] {∫ 𝜃𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡2

0
} +

𝑐𝑠𝑖.𝑣𝑖 ∫ −𝛼𝑖𝐼𝑖(𝑡)𝑑𝑡
𝑡3

𝑡2

𝜏𝑖𝑄𝑖
}]  

(100) 

Subject to: 

𝐼𝑖(𝑡) ≥ 0; 0 ≤ 𝑡 ≤ 𝑡2; 𝑖 = 1,2, … , 𝑀 (101) 

𝑣𝑖 = {
0; 𝐼𝑖(𝑡) > 𝑟𝑖  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑛𝑜𝑡 𝑜𝑟𝑑𝑒𝑟𝑒𝑑

1; 𝐼𝑖(𝑡) ≤ 𝑟𝑖;  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑜𝑟𝑑𝑒𝑟𝑒𝑑
 

(102) 

𝑛𝑖 = ⌈
𝑌𝑖

𝑧𝑖
⌉ ≥ 1 

(103) 

0 ≤ 𝑇𝐶 ≤ 𝐶 (104) 

𝐶 = 𝐶1 + 𝐶2 (105) 

0 ≤ ∑ 𝑓𝑖 ≤ 𝑊

𝑀

𝑖=1

 
(106) 

𝐶, 𝐶1, 𝐶2, 𝐿, 𝑐𝑏𝑖 , ℎ𝑖 > 0 (107) 

0 ≤ 𝜃𝑖 ≤ 1 (108) 

0 ≤ 𝛼𝑖 ≤ 1 (109) 

0 ≤ 𝑎 ≤ 1 (110) 
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CONCLUSION 
Management of pharmaceutical inventory in hospitals 
has become a critical challenge for health care systems. 
This paper develops a multi-stage stochastic 
programming model to optimize the pharmaceutical 
inventory costs with uncertainty in demand, lead time 
and received quantity. This model assumes a continuous 
review policy, with a (Q, r) model for multi-products in 
one echelon pharmacy supply chain, i.e. a hospital. Stock 
out is overcome by backorder entirely, without 
considering loss sale. 
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