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ABBREVATIONS
AchE: Acetylcholinesterase Enzyme; AD: Alzheimer’s Disease; 
APP: Amyloid Precursor Protein; CSF: Cerebrospinal Fluid; 
DNA: Deoxyribonucleic Acid; GABA: Gamma Amino Butyric 
Acid; HbA1C: Glycated Heamoglobin or Heamoglobin A1c; 
HPA: Hypothalamic Pituitary Adrenal Axis; IGF-1: Insulin like 
Growth Factor 1; NMDA: N-Methyl D-Aspartate; RNS: Reactive 
Nitrogen Species; ROS: Reactive Oxygen Species; TACE: Tumor 
necrosis factor Alpha Converting Enzyme; TNF: Tumor Necrosis 
Factor

INTRODUCTION
Brain aging is a neurodegenerative disorder that is associated with 
cognitive decline due to pathophysiological processes in the brain 
(Morel GR, et al., 2017). Alzheimer’s disease is also a neurodegen-
erative disease. These two are the leading causes of dementia/cog-
nitive impairment (Shiel Jr WC, 2016). Recent statistics state that 
almost 46.8 million people are affected by these diseases world-
wide at the age of greater than or equal to ≥ 65 years (Gleerup 
HS, et al., 2019). This prevalence will increase to approximately 
88 million people by 2050 (Alzheimer’s Association, 2019). Aging 
is the major cause of Alzheimer’s disease. Aging is mainly due to 
the generation of reactive oxygen species, which affect the organ-
elles of mitochondria (Yankner BA, et al., 2008). Aging is mainly 
due to increased free radical generation, which affects mitochon-
dria. These reactive oxygen species damage mitochondrial DNA, 
which causes a loss of mitochondrial function, and interferes with 
the production of Adenosine Triphosphate (ATP) and the metab-
olism of energy (Nikhra V, 2017). Another cause of neurodegen-
eration due to aging is the formation of amyloid-beta plaques 
(Gleerup HS, et al., 2019; Swerdlow RH, 2011) and tangles by tau 
phosphorylation (Gleerup HS, et al., 2019). Neuronal cell death 
leads to neurodegeneration and includes Alzheimer’s disease, 
Parkinson’s disease, and mild cognitive impairment (Nikhra V, 
2017). Cognitive decline is mainly due to the degeneration of the 
temporal lobe, frontal lobe, parietal lobe, visual cortex and hippo-

campus (Nikhra V, 2017; Panizzutti R, et al., 2014).

Neuronal changes with aging
Not all brain regions are affected to the same extent (Panizzutti R, 
et al., 2014). The frontal and temporal lobes are affected more than 
the occipital and parietal lobes (Gleerup HS, et al., 2019; Lockhart 
S, et al., 2014). Shrinkage of gray matter and loss of white matter 
are expressed with age (Panizzutti R, et al., 2014; Lockhart S, et 
al., 2014). Recent studies state that synaptic dysfunction leads to 
aging (Azpurua J and Eaton BA, 2015). Strong evidence of aging 
and Alzheimer’s Disease (AD) is due to the complete loss of syn-
apses, which was found in recent studies (Azpurua J and Eaton 
BA, 2015).

Role of brain neurotransmitters
Alterations of neurotransmitters and their receptors in different 
regions of the brain take place during the aging process (Nikhra V, 
2017). Excitatory and inhibitory amino acids play a role at synapse 
glutamate, and Gamma-Aminobutyric Acid type A (GABAA) 
shows excitatory and inhibitory action at the synapse (Rissman 
RA, et al., 2007).
Dopamine plays a role in cognitive control and the reward path-
way. A decrease in dopamine levels takes place from adulthood. 
Therefore, decreased dopamine levels with age lead to cognitive 
and neurological decline (Nikhra V, 2017). N-methyl-D-aspartate 
(NMDA) receptors, which are excitatory in function, act on learn-
ing and memory. A recent review states that cognitive impairment 
in ageing is due to decreased NMDA receptors (Panizzutti R, et 
al., 2014). Acetylcholinesterase breaks down the acetylcholine 
into acetate and choline molecules. AchE enzyme levels are al-
tered/raised during aging (Sirviö J and Riekkinen PJ, 1992).

LITERATURE REVIEW
Theories of aging
Many theories have explained the aging process (Davidovic M, 
et al., 2010). Theories of aging are broadly categorized into two 
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Figure 1: Different theories of aging

ers have been working in this view by enhancing immune action in older 
people, the aging process is delayed (Fulop T, et al., 2014; Park DC and 
Festini SB, 2017).

Error theory
Error theory includes free radicals, wear and tears, gene regulation, mito-
chondrial DNA damage, and the cellular senescence/telomere theory. This 
theory is also known as the damage theory, because it is due to progressive 
damage to tissues at various levels (Jin K, 2010; Weinert BT and Timiras 
PS, 2003).
Wear and tear theory: Essential parts of cells and tissues that wear out 
which leads to aging. The repeated use of body parts leads to wear out. This 
theory was first explained by Weismann A, a German biologist, in 1882 
(Jin K, 2010; Weinert BT and Timiras PS, 2003).
Free radical theory: This is the best theory to explain brain aging. Free 
radical generation and accumulation cause oxidative damage to macro-
molecular components of the cell such as DNA, lipids and proteins (Jin 
K, 2010; Weinert BT and Timiras PS, 2003; Kumar H, et al., 2012). Free 
radicals consist of Reactive Oxygen Species (ROS) and Reactive Nitrogen 
Species (RNS). ROS include hydroxyl ions (OH-), superoxide (O2

-) and 
hydrogen peroxide (H2O2). The generation of ROS and RNS is particular-
ly the cause of neurodegenerative disorders (Kumar H, et al., 2012; Vina 
J, et al., 2013; Salminen LE and Paul RH, 2014). Free radical generation 
leads to mitochondrial dysfunction, which damages mitochondrial DNA, 
and causes cell death. This process leads to cognitive decline because white 
matter is affected by oxidative species (Vina J, et al., 2013; Salminen LE and 
Paul RH, 2014) (Figure 2).

categories: Programmed and error theories (Sergiev PV, et al., 2015). Three 
subdivisions exist in programmed theory and they are a) programmed 
longevity, b) neuroendocrine theory and c) immune theory (Jin K, 2010). 
The error theory contains (a) wear and tear theory, b) theory of free rad-
icals, c) rate of living theory, d) cross-linking theory, e) gene regulation, f) 
somatic mutation theory, g) apoptosis and h) cellular senescence/telomere 
theory (Jin K, 2010; Weinert BT and Timiras PS, 2003) (Figure 1).

Programmed theory
Program of longevity: This theory says that people who face moderate 
stress during the starting stage of life, have a long life. Moderate stress 
includes environmental variations and dietary habits (high-calorie diet) 
(Davidovic M, et al., 2010; Jin K, 2010; Kahn A and Olsen A, 2010). There-
fore, consuming a low caloric diet delays the aging process.
Neuroendocrine theory: Central Nervous System (CNS) and ductless 
glands together called neuroendocrine systems. The endocrine system 
is a part of the cerebrum, i.e., the hypothalamus acts as a control centre, 
which regulates several functions by secreting some hormones. Hypothal-
amic-Pituitary-Adrenal (HPA) plays a major role in the response to stress 
(Jin K, 2010; Weinert BT and Timiras PS, 2003; van Heemst D, 2010). After 
several studies on primates, we gained information about the overactivity 
of the HPA axis (Aguilera G, 2011). HPA axis overactivity leads to neuron-
al degeneration associated with aging.
Immune theory: According to this theory, the immune system progres-
sively increases in puberty and then gradually declines its function. Due 
to a decrease in immunity, there is decreased protection against infectious 
diseases. Therefore, the immune system plays a role in aging (Jin K, 2010; 
Weinert BT and Timiras PS, 2003; Fulop T, et al., 2014). Recently, research-
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Rate of living theory: This theory explains that, based on the metabolic 
potential of living organisms, assume the life span. Greater the metabolic 
potential, short term its life span. This theory cannot completely explain 
the reasons for the greater life span (Jin K, 2010; Weinert BT and Timiras 
PS, 2003; Vina J, et al., 2013; Brys K, et al., 2007; Hulbert AJ, et al., 2007).
Crosslinking theory: Aging is due to the assembly of cross-linked proteins 
that impair the functions of cells and tissues (Jin K, 2010; Bjorksten J and 
Tenhu H, 1990).
Gene regulation: Changes in gene expression lead to aging. Recent re-
search in aging focuses on the Insulin-like Growth Factor-1 (IGF-1) path-
way regulates the aging process in rodents (Weinert BT and Timiras PS, 
2003; Tatar M, et al., 2003). IGF-1 has more than one action on the brain, 
such as neuroprotection and the production of neurons.
Somatic mutation theory: According to this theory, impairment of cellu-
lar function is due to mutations in somatic cells (Jin K, 2010; Weinert BT 
and Timiras PS, 2003). One of the causes of mutations in mitochondrial 
DNA (mtDNA) is increased production of reactive oxygen species, leading 
to neurodegeneration (Kennedy SR, et al., 2012; Schulz TJ, et al., 2007).
Apoptosis: Generally, it is called cell suicide or cell death. This theory ex-
plains that due to extensive damage to DNA or genetic events, aging takes 

place (Weinert BT and Timiras PS, 2003).
Cellular senescence/telomere theory: This phenomenon was established 
by Flick H, 1965. Cell senescence is the process that decreases the number 
of cell divisions compared with normal cells. After a few divisions of cells, 
cell division stops due to changes in function (Weinert BT and Timiras PS, 
2003; Schulz TJ, et al., 2007; Ogrodnik M, et al., 2019). At one particular 
time, cell division stops permanently. This process is known as replicative 
senescence (Schulz TJ, et al., 2007; Davalli P, et al., 2016).
Telomere theory explains that the replication of cells stops when the length 
of the telomere decreases. Due to these cells die. Finally, it causes the death 
of the organism. The shortening of telomeres is one of the causes of neuro-
degeneration (Schulz TJ, et al., 2007; Ogrodnik M, et al., 2019; Davalli P, et 
al., 2016; Ferrón SR, et al., 2009; Strimbu K and Tavel JA, 2010).

Biomarkers of aging
According to National Institute of Health (NIH), biomarker is a character-
istic that is objectively measured and evaluated as an indicator of normal 
biological processes, pathogenic processes or pharmacological responses 
to a therapeutic intervention (Crimmins E, et al., 2008; WHO, 2001; Butler 
RN, Sprott RL, 2004; de Gruttola VG, et al., 2001) (Table 1).

Figure 2: Brief representation of free radical theory of aging
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Table 1: An illustrated table showing key biomarkers of aging

S.No Biomarker 
category

Subcategory Biomarker Mechanism of aging Method of estimation Reference

1 CSF biomark-
ers

β-Amyloid Aβ-42, Aβ-40 Aβ senile plaques ELISA Blennow K, et al., 
2001

Tau Total tau Increased tau levels leads to neuronal death ELISA Buée L, et al., 
2000; Chai X, et 

al., 2012
2 Blood based 

biomarkers
Aβ and APP Amyloid-β Pre-

cursor Protein
Increased APP increases A β which causes 

neurodegeneration
ELISA Roher AE, et al., 

2018
Diabetes 
marker

HbA1c Increased HbA1c leads to diabetes. Diabetes 
is the cause for cognitive decline

High-Performance Liquid 
Chromatography (HPLC)

Raval DK, et al., 
2011

Hormonal 
marker

NTproBNP Higher NTproBNP leads to lowest systolic 
pressure causes cognitive decline

Chemiluminescent Immu-
noassay

Daniels LB, et al., 
2011

IGF-1 IGF-1 production declines with age. Major 
role of IGF-1 in cell proliferation which 

regulates aging process

ELISA Gubbi S, et al., 
2019

Renal biomark-
er

Cystatin C Low serum cystatin C is a biomarker of 
future risk of AD and cognitive decline

ELISA or Radio Immunoas-
say (RIA)

Mathews PM and 
Levy E, 2016

Inflammatory 
marker

IL-6 Increased IL-6 reduced total brain volume ELISA Ridker PM, 2003; 
Gorelick PB, et al., 

2011
CRP Increased CRP reduced total brain volume Nephlometry and immuno-

turbidometry method
TNF-α Increased TNF-α leads to apoptosis which 

causes aging
ELISA and Highly sensitive 

enzyme amplified lanthanide 
luminescence immunoassay

3 Salivary bio-
markers

β-amyloid Aβ-42, Aβ-40 From CSF these are secreted in to saliva ELISA Farah R, et al., 
2018

Tau protein P-tau, T-tau P-tau, T-tau protein levels increased in 
neurodegenerative disorder

ELISA Ashton NJ, et al., 
2018

Enzyme AchE Decreased AchE enzyme, increases the 
Acetylcholine concentration which leads to 

Aβ plaque formation

Ellman’s colorimetric 
method

Inestrosa NC, et 
al., 1996

4 Urinary bio-
markers

Hopeful bio-
markers

Methionine, 
Desaminotyro-
sine, 5-hydroxy 

indole acetic 
acid, Taurine, 

N1-acetylsper-
midine

These proteins are elevated due to oxidative 
stress, which is the main cause of aging

Nuclear magnetic resonance 
(NMR) based metabolomics 

and Liquid Chromatogra-
phy-Mass Spectrometry 

(LC-MS) based metabolo-
mics

An M and Gao Y, 
2015

Prior to onset 
of cognitive 

decline

3-hydroxyky-
nurenine

Homogentisate
Allantoin

These proteins are elevated due to oxidative 
stress, which is the main cause of aging

NMR based metabolomics Lovestone S, 2010

5 Molecular 
biomarkers

DNA and chro-
mosome

Leukocyte telo-
mere length

Telomere length decreases with aging Neuroimaging Xia X, et al., 2017

DNA damage DNA repair DNA repair slow down by aging and unre-
paired DNA causes aging

Gas Chromatography-Mass 
Spectrometry (GS-MS), RIA, 
ELISA and electrochemical 

methods

Maynard S, et al., 
2015

RNA transcrip-
tome

Transcriptome 
profiles

Heterogeneity of T-cells decreases or in-
creases with aging

Dynamic Transcriptome 
Analysis (DTA) method.

Dillman AA, et 
al., 2017

Micro RNAs mi-34a, miR21, 
miR-1263P, 

miR-151a-3P, 
miR-181a-5P 
and miR-1248

miRNAs function post-transcriptionally by 
inhibiting translation from specific target 

miRNAs. These small RNA molecules were 
thought to contribute to ageing or miRNA 

cause a general reduction of message-specif-
ic translational inhibition during ageing

HITS-CLIP (High Through-
put Sequencing to Cross-
linking Immunoprecipita-

tion) and Northern blot

Grammatikakis I, 
et al., 2014; Pincus 

Z, et al., 2017
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Importance of biomarkers
Neurodegeneration is the main cause of brain aging and it occurs due to 
the presence of senile plaques and by the formation of neurofibrillary tan-
gles (de Gruttola VG, et al., 2001; Rao P, et al., 2013). The importance of 
biological markers is to predict, diagnose and monitor health problems in 
the human population. Biomarkers detect the disease, before the onset of 
symptoms. It is helpful for studying cross-sectional and longitudinal stud-
ies in humans (Xia X, et al., 2017; Wiltfang J, et al., 2002). Aging can be 
predicted by biomarkers. Different categories of biomarkers are discussed 
below.

Cerebrospinal Fluid (CSF) biomarkers 
CSF consists of biomarkers of neurodegenerative disease, in primates. 
Amyloid beta (Aβ) and Tau proteins that are present in CSF are biomarkers 
to estimate brain aging.
CSF Aβ: Aβ generally exists in many isoforms, i.e., Aβ1-42. Aβ1-40 is the 
most abundant isoform (Chen JA, et al., 2018; Masters CL, et al., 1985). 
Aβ1-42 is less abundant, but it is a major isoform that forms plaques in 
human brains (Haass C and Selkoe DJ, 1993). Amyloid Precursor Pro-
tein (APP) is a precursor and the proteolytic cleavage of APP generates 
Aβ (Buxbaum JD, et al., 1998). Aβ is cleaved from APP by the enzyme 
alpha-secretase. Researchers recently identified that ADAM (A Disinteg-
rin and Metalloproteinase), ADAM 10 and Tumor necrosis factor-α-Con-
verting Enzyme (TACE) also have alpha-secretase action (Lammich S, et 
al., 1999; Jarrett JT, et al., 1993). Aβ-42 aggregates more quickly than Aβ-
40, which forms a senile plaque (Masters CL, et al., 1985; Blennow K, et al., 
2001). Reduced levels of Aβ42 in CSF lead to aging. However, the decrease 
in AB-42 levels is due to the deposition of Aβ-42 as senile plaques (Motter 
N, et al., 1995; Tamaoka A, et al., 1997). It is little contemporary to find 
a strong correlation between levels of Aβ-42 and number of plaques. A 
recent study says that there is no change in CSF Aβ-40, but a marked de-
crease in Aβ-42 leads to aging, early AD and Mild Cognitive Impairment 
(MCI) (Fukuyama R, et al., 2000; Mehta PD, et al., 2000; Blennow K, et 
al., 1995). The most commonly used method to estimate CSF Aβ levels is 
Enzyme-Linked Immunosorbent Assay (ELISA) (Blennow K, 2004; Buée 
L, et al., 2000).
CSF tau: Tau protein is present in the axon of neurons. Six isoforms are 
based on size, i.e., 352 to 441 amino acids. Tau protein hyperphosphory-
lation leads to the formation of neurofibrillary tangles and senile plaques 
(Grundke-Iqbal I, et al., 1986; Franz G, et al., 2003).
An increase in CSF total Tau leads to neuronal death (Chai X, et al., 2012; 
Kohnken R, et al., 2000). It is also estimated by the ELISA method (Zetter-
berg H and Burnham SC, 2019).

Blood-based biomarkers
Biological markers in blood are present at very minute concentrations 
because the BBB (Blood Brain Barrier) prevents the entry of molecules 
between the central nervous system and blood compartments. However, 
some biomarkers related to neurodegenerative disorders are present 
in peripheral tissues, and are measured in the blood. Due to the patho-
logical process of brain aging, other biological markers are estimated, i.e., 
inflammatory biomarkers, IGF-1, NT- and HbA1c (Justice JN, et al., 2018; 
Balducci C and Forloni G, 2014).
Plasma Aβ and Amyloid β Precursor Protein (APP): Recent studies have 
reported that the presence of APP (Amyloid β precursor protein) periph-
erally it increases Aβ. APP is a membrane protein that plays a major role in 
the growth and repair of neurons.
APP is increased, by the action of secretases. Aβ is capable of causing chan-
ges in the pathology of neurodegenerative diseases (Watts JC, et al., 2004; 
Mormino EC, et al., 2012; Roher AE, et al., 2017; Oh H, et al., 2014; Wag-

ner KH, et al., 2016).
Inflammatory markers: Interleukin-6 (IL-6), CRP and Tumor Necrosis 
Factor- α (TNF-α) are collectively called inflammation markers (Wyss-
Coray T and Rogers J, 2012). Inflammation also contributes to neurode-
generation (Tancredi V, et al., 2000). Neurodegeneration is due to neuronal 
apoptosis and synaptic plasticity and inhibits hippocampal neurogenesis 
(Balschun D, et al., 2004; Gu Y, et al., 2017; McCarty MF, 1999). Accord-
ing to Ridker PM and MC Carty, peripheral inflammatory markers cause 
cardiovascular diseases and these changes affect cerebrovascular pathology 
(Ridker PM, 2003; Gorelick PB, et al., 2011; Berelowitz M, et al., 1981).
IGF-1: Insulin-like Growth Factor-1 hormone is produced from both 
endocrine and autocrine cells. IGF-1 hormone production is high at early 
years of age and at the puberty stage. IGF-1 production declines with age 
(Yamamoto H, et al., 1991; Tarantini S, et al., 2016). IGF-1 plays a major 
role in cell proliferation, which regulates the aging process (Gubbi S, et al., 
2018; Deak F and Sonntag WE, 2012; Dar B, et al., 2015).
Haemoglobin A1c (HbA1c): The glycated haemoglobin HbA1c test is 
used to monitor the blood sugar levels in diabetes. A recent study revealed 
that HbA1c also helps to identify age-accelerating glycation. Increased 
HbA1c leads to an increase risk of diabetes. Dar B reported that diabetes is 
one of the causes of cognitive decline and neurodegeneration (Wu L, et al., 
2017; Raval DK, et al., 2011; van Vliet P, et al., 2014), which leads to aging.
N-Terminal pro-Brain Natriuretic Peptide (NT-proBNP): It is an in-
active form of pro-brain natriuretic peptide hormone. NT-proBNP is a 
marker of congestive heart failure and MI. However increased NT-proB-
NP levels are not specific due to CHF in normal people (Daniels LB, et al., 
2011).
Daniels LB, et al., 2011; Feinkohl I, et al., 2012 and Marksteiner J, et al., 
2014 stated that higher NT-proBNP levels lead to cognitive decline when 
compared to healthy subjects. Recent studies stated that both higher 
NT-proBNP and lowest systolic blood pressure lead to cognitive decline 
when compared with other subjects (Daniels LB, et al., 2011). NT-proBNP 
reflects cardiac, neurovascular and neurodegenerative etiologies (Filler G, 
et al., 2005).
Cystatin: Higher serum cystatin C levels indicate Chronic Kidney Disease 
(CKD), cancer, hypertension, rheumatoid arthritis, cardiovascular disease 
and neurodegeneration (Sundelöf J, et al., 2008). A recent study by Sun-
delof J reported that lower serum Cys C leads to an increased risk of AD, 
which is not dependent on age. This study indicates that low serum Cys C 
is a biomarker of future risk of AD and cognitive decline (Mathews PM 
and Levy E, 2016; Mandel ID, 1987).

Salivary biomarkers
Saliva is a physiological fluid that is secreted by salivary glands. It plays a 
role in the digestion of carbohydrates, antibacterial action, and lubrication.
Saliva collection for the estimation of biomarkers is easy, inexpensive and 
painless when compared with blood and CSF. CSF proteins such as Aβ-42, 
Aβ-40, and tau are excreted into saliva (Farah R, et al., 2018). The following 
proteins are estimated in the saliva:
β-Amyloid: Aβ-42 and Aβ-40 are estimated in saliva. A recent study by 
Farah R reported that Aβ-42 predicts familial genotype neurodegeneration 
(Lee M, et al., 2017). Aβ-40 did not show any variation between two-state 
control subjects (Ashton NJ, et al., 2018). Aβ-42 and Aβ-40 levels were es-
timated by ELISA.
Tau protein: Phosphorylated tau (p-tau) and total tau (t-tau) were de-
tected in saliva. P-tau and t-tau levels are increased in Alzheimer’s disease. 
However, there is no significant difference, due to the undefined source 
that secretes the biomarkers into the saliva (Lau HC, et al., 2015; White-
house PJ, et al., 1981).
Acetylcholinesterase (AchE) activity: AchE is an enzyme that degrades 
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the acetylcholine neurotransmitter at the synapse. Recent research re-
ported that the AchE enzyme decreases with age. Decreased AchE leads 
to an increased acetylcholine concentration, which damages neurons by 
enhancing Aβ-plaque formation (Inestrosa NC, et al., 1996; Rees T, et al., 
2003; Boston PF, et al., 2008). Decreased AchE is a biomarker of brain ag-
ing, which was estimated by Ellman’s colorimetric method (van der Strate 
BW, et al., 2001).

Other biomarkers
Lactoferrin (Huan T, et al., 2018), spinganine-1-phosphate, ornithine and 
phenyllactic acid (Liang Q, et al., 2015), and inosine-3-dehydrocarnithine 
and hypoxanthine (Mucke L, 2009) are other biomarkers in saliva.
Urinary biomarkers: Neurodegenerative disorders were diagnosed by 
the estimation of biomarkers in CSF that take place at the late-stage of the 
disorder. Therefore, early diagnosis of neurodegenerative disorders can be 
diagnosed by the estimation of markers in urine.
Urinary biomarkers can be estimated in transgenic animal models (Fuku-
hara K, et al., 2013; Lovestone S, 2010). Biomarkers before the onset of cog-
nitive decline are hydroxy-kynurenine, homogentisate, and tyrosine (An 
M and Gao Y, 2015). Other markers in urine are 1-methyl nicotinamide, 
dimethylamine, trigonelline, dimethylamine, citrate, urea, and 2-oxoglu-
tarate, which are identified at the late stage of the neurodegenerative disor-
der (An M and Gao Y, 2015; Bratic A and Larsson NG, 2013).
Methionine, desaminotyrosine, taurine and N1-acetylspermidine are 
promising biomarkers (An M and Gao Y, 2015).
Molecular biomarkers: Alterations at the molecular level lead to aging. 
Molecular biomarkers predict and monitor the aging process (Kirkwood 
TB, 2005). Molecular mechanisms contributing to aging include, DNA 
damage, oxidative stress, changes in RNA expression and telomere short-
ening (Sedelnikova OA, et al., 2004; Dollé ME, et al., 1997).
Free radical theory is a common cause of DNA damage, mitochondrial 
dysfunction, and telomere shortening (Hayflick L, 2007).
DNA damage: DNA damage occurs due to free radical generation and ac-
cumulation. DNA repair slows down with aging. Unrepaired DNA dam-
age causes genomic instability and aging. Damaged DNA causes mutations 
that affect neurons (Maynard S, et al., 2015).
Telomere shortening: Telomeres are located at the end of chromosomes, 
and after each replication, they become shorter. The length of the leuko-
cyte telomere indicates aging. Leukocyte telomere length decreases with 
age (Nakamura KI, et al., 2007). Recent studies by Nakamura KI, stated 
that changes in telomere length reported a positive correlation with age 
in 40 older individuals (Lukens JN, et al., 2009). Longer telomere length is 
greater than 60 years, and increases life span (Cawthon RM, et al., 2003). 
Shorter telomere length reflected mortality in humans for less than 60 
years (Leal SL and Yassa MA, 2015).
Ribonucleic Acid (RNA) and transcriptome: RNA quality, i.e., the DNA 
sequence, is one of the markers of brain aging (Dillman AA, et al., 2017). 
The RNA sequence contains a relatively large number of detected genes. 
Dillman AA reported that changes in RNA-sequence affect neurotrans-
mitters at synapses, i.e., both excitatory and inhibitory neurotransmitters 
(Grolleau-Julius A, et al., 2010). Gene expression in the brain was affected 
by heterogeneous cellularity. RNA sequencing provides good insight into 
brain aging.
microRNAs (miRNAs): It is a noncoding RNA. Recent studies on miRNAs 
state that, they can be present in peripheral tissues, which can be used to 
identify changes in the origin of cells (Hooten NN, et al., 2013). miRNA 
is considered a significant biomarker of brain aging (Grammatikakis I, et 
al., 2014).
Two sources of RNA exist peripherally extracellular RNA and Peripheral 

Mononuclear Blood Cells (PBMCs). Blood, plasma and CSF help to de-
velop miRNA markers for neurodegenerative disorders such as AD, brain 
aging and other neurological diseases (Pincus Z, et al., 2011).
Different miRNA markers are identified as miRNA-34a, miR-21, miR-126-
3p, miR-151a-3p, miR-181a-5p and miR-1248 (Li X, et al., 2011). Recent 
work on miRNA-34a was reported by Li X, miRNA-34a is a tumor sup-
pressor in the brain, and its absence leads to the development of tumors in 
the brain (Wagner KH, et al., 2015). However, a sharp increase in miRNA-
34a is a noninvasive marker of neurodegeneration and age-dependent 
brain decline. Therefore, miRNA-34a is considered an early biomarker for 
changes in the brain (Pincus Z, et al., 2011; Wagner KH, et al., 2015).

Novel biomarkers 
Recently, some biomarkers have been identified. Bilirubin is a novel mark-
er for aging (Simm A, et al., 2015). Advanced Glycation End products 
(AGEs) a marker for age-related diseases, including neurodegeneration 
(Sharma S, et al., 2013). Metallothioneins act as free radical scavengers. It 
plays a role as a neuroprotector of the aging brain (Cenini G, et al., 2019).

DISCUSSION AND CONCLUSION
Multiple theories of aging have been proposed in the present review, in-
cluding biomarkers of aging. Current evidence suggests that the free rad-
ical theory of aging may be associated with neurodegenerative diseases. 
Apoptosis and mitochondrial dysfunction due to the generation and ac-
cumulation of free radicals mainly increase oxidative phosphorylation in 
the body, which affects the normal aging process. Kumar H reported that 
as age increases, oxidative stress increases, which is one of the causes of 
many people prone to neurodegenerative disorders. Cenini G also stated 
that free radical accumulation leads to early neurodegeneration at normal 
age, which causes cognitive decline. Novel biomarkers at the molecular 
level are mentioned in the form of a concise table, which provides infor-
mation about different markers that help in predicting human aging. From 
this review, the long term goal is to identify new therapeutic targets in drug 
discovery, that can reduce the prevalence rate of neurodegeneration.
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