Antimalarial Activity of Lamiaceae Family Plants: Review

Ami Tjitraresmi¹, Moelyono Moektiwardoyo¹, Yasmiwar Susilawati¹, Yoshihito Shiono²

¹Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran Jln. Raya Bandung Sumedang Km 21 Jatinangor 45363, Indonesia ² Faculty of Agriculture Yamagata University Japan.

Corresponding author: ami.tjitraresmi@unpad.ac.id

ABSTRACT

Malaria is a major infectious disease caused by *Plasmodium sp.*, and it can infect human's trough females' mosquitos *Anopheles sp.* bite. Plasmodium resistance to malarial drugs used today occurs mostly in endemic areas, so it is necessary to look for alternative medicines for malaria, especially medicines derived from plants

Objective: The objective of writing this literature review is to see the ability of the Lamiaceae family plant as a source of new malaria medicines.

Methods: Scientific evidence of traditional use, antiplasmodial activity, and active antimalarial compounds from plants belong to Lamiaceae family used to support this article are carried out by searching online for articles related to the title of this article.

Results: Lamiaceae family plants used for malaria treatment traditionally in many countries, and many of them have been examined for their antimalarial activity *in vitro* against *P. falciparum* or *in vivo* against *P. berghei* in mice, and they have antimalarial effect with various potency. There are forty active antimalarial compounds isolated from plants of Lamiaceae family, and these could be candidates for new antimalarial medicines.

Conclusion: Lamiaceae family is proven to be a source of plants that have antimalarial activity, this can be seen from their traditional use as malarial drugs in various countries, the number of plant extracts with antimalarial activity and many active antimalarial substances isolated from Lamiaceae family plants, but they still need to be further examined to become antimalarial drugs.

INTRODUCTION

Malaria is а tropical disease caused by parasite *Plasmodium sp.*, and it can infect human's trough females' mosquitos Anopheles sp. bite. According to WHO, in 2017, there are still around 219 million cases of malaria globally, with a mortality rate of 435,000. The rate of mortality and morbidity is still high, especially in developing countries¹. Malaria is highly lethal unless diagnosed. The types of Plasmodium that initiate malaria in humans are P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. The fatal Plasmodium type of malaria is *P. falciparum*.^{2,3,4}.

Plasmodium falciparum resistance to some malarial drugs could be a problem, particularly in the endemic zones⁵. Antimalarial drug resistance can increase morbidity and mortality due to malaria. Resistance occurs mainly because of mutations in the gene from Plasmodium⁶. This has highlighted the imperative have to be compelled to develop new antiprotozoal agents, ideally cheap medicine that area unit reasonable for developing countries, wherever protozoal infection is prevailing.

The Lamiaceae or earlier called Labiatae may be a family of flowering plants, large shrubs, and herbs, with a cosmopolitan distribution containing 236 genera and has been explicit about containing 6900–7200 species. Salvia was al largest genus in the Lamiaceae family; it contained 900 plant species. Some large genus of plants that belong Keywords: Diabetes patient, Mobile application, Primary health care.

Correspondence:

¹Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran Jln. Raya Bandung Sumedang Km 21 Jatinangor 45363, Indonesia

Corresponding author: ami.tjitraresmi@unpad.ac.id

to the family Lamiaceae are Scutellaria, Stachys, Plectranthus (300 species), Teucrium, Vitex, Thymus, and Nepeta (200 species)⁷. Plants belonging to the Lamiaceae are taken into consideration a splendid supply for locating new herbal medication with capability bioactivities⁷.

METHODS AND MATERIAL

Scientific evidence of traditional use, antiplasmodial activity, and active antimalarial compounds from plants belonging to the Lamiaceae family used to support this article are taken from the online journal literature.

LITERATURE FINDING

The systematic literature review was carried out by searching online for articles related to the title of this article. The article search began on April 28, 2020, with keywords; "Lamiaceae antimalaria", "Lamiaceae antiplasmodial". The following searching database is: "Pubmed" and "Google scholar", The articles for this review are articles published after 2000, not in the form of review article or opinion.

RESULTS AND DISCUSSIONS

In several countries in Africa and Asia, the the Lamiaceae family plants are widely used as a traditional antimalarial herbal medicine (Table 1).

Plant species	Partused	Geographical region	Reference
Aiuga bracteosa	Leaves	West Himalaya India	9 10
njugu bruccobu	licuves	Yemen	,,10
		Saudi Arabia	
Ajuga integrifolia Buch. Ham.	Aerial parts	Lesser Himalayas-Pakistan	11,12,13
	Leaves	Maradori Valley, Pakistan	13
<i>Ajuga parviflora</i> Benth	Leaves	Lesser Himalayas, Pakistan	12
Clerodendrum johnstonii Oliv.	Rootbark, Leaves	East sub-County, Kenya	11
Fuerstia africana T.C.E.Fr.	Aerial parts	East sub-County, Kenya	11
<i>Gmelina arborea</i> Roxb.	Leaves	south-eastern Nigeria	14
Hoslundia oposita	Root bark	Tanzania	15
Loopotic loopurus (L) D. Dr	Loovoo	Couth African	16
Leonotis leonurus or Hort (vallow)	Leaves	South African	10
Leonolis leonarus ex Hort (yellow)	Leaves	South Annean	10
Leucas aspera (Willd.) Link	Whole plants	Lesser Himalayas, Pakistan	12
Leucas calostachys Oliv.	Aerial parts	East sub-County, Kenya	11
Leucas cephalotes	Whole plants	West Himalaya, India	9
Mentha piperita	Leaves	West Himalaya, India	9
Mentha spicata L.	Aerial part	Somali Region, Ethiopia	17
Nepeta hindostana	Leaves	West Himalaya, India	9
Ocimum basilicum L.	Leaves	Lesser Himalayas, Pakistan	12
Ocimum gratissimum L.	Whole plants	Democratic Republic of Congo	18
	Leaves	south-eastern Nigeria	14
		Middle Belt Nigerian	19
			20
<i>Ocimum lamiifloium</i> Hochst. ex Benth	Leaves	Ethiopia	21
Ocimum spicatum Deflers	Leaves	Somali Region, Ethiopia	17
Ocimum suave Willd.	Leaves	Kwale county of Kenya	22
Ocimum tenuiflorum L.	Root	Lesser Himalayas, Pakistan	12
Ocimun kilimandscharicum Gürke	Aerial parts	East sub-County, Kenya	11
Origanum majorana L.	Aerial Part	Faisalabad, Pakistan	13
Origanum vulgare L.	Aerial Part	Faisalabad, Pakistan	13
Plectranthus barbatus Andrews.	Leaves, Stem	Yemen	23
		Saudi Arabia	22
		Kwale county of Kenya	
	Leaves	East sub-County, Kenya	11
<i>Rotheca myricoides</i> (Hochst.) Steane & Mabb.	Aerial parts	East sub-County, Kenya	11
Roylea cinerea	Leaves	West Himalaya, India	9
Roylea cinerea (D.Don) Baillon	Leaves	Kedarnath, Garhwal, Uttarakhand,	24
		India, NorthWestern Himalaya, India	
Solenostemon monostachyus (P.	Leaves	Southeast Nigeria	19
Beauv.) Briq.			24
Thymus linearis Benth.	Whole plants	Lesser Himalayas, Pakistan	12

alarial medicine
)

The most utilized plants of the 31 species of family Lamiaceae come from the genus Ocimum (7 plants) followed by the genus Ajuga (3 plants) and Leucas (3 plants), Leonotis (2), Mentha (2), Origanum (2), Rovlea (2), Clerodendrum, Fuerstia, Gmelina, Hoslundia, Nepeta, Plectranthus, Rotheca, Solenostemon, Thymus, and Vitex each with one plant. The most widely used part of herbal malarial management is the leaves and roots, while of all the libraries reviewed, the way to make the most preparations of medicine is by boiling plant parts in water (decocted). It can be concluded, that traditionally, plants from the Lamiaceae family have long been consumed to treat malaria, the research into antiplasmodial activity and its active compounds from this family plant are interesting to do.

Several plants commonly used as malaria drugs and several other plants from the Lamiaceae family have been investigated for their antimalarial efficacy both *in vitro* against *Plasmodium falciparum* or *in vivo* against *Plasmodium berghei* in animal mice, as shown in Table 2.

Plant species	Antiplasmodial activity against <i>P. falciparum</i> . IC ₅₀ and strains used	Antiplasmodial activity against <i>P. berghei</i> in mice	References
Ajuga laxmannii	The aerial parts methanolic extract, <i>n</i> - hexane fractions, and ethyl acetate fractions, $IC_{50} > 50 \mu g/mL$, 7.5 $\mu g/mL$, and 3.2 $\mu g/mL$ (K1) respectively		25
<i>Ajuga remota / Ajuga bracteosa</i> Wall ex Benth.	the leaves ethanolic extract gave IC_{50} of 55 μ g/ml (FCA/20GHA); and IC_{50} of 57 μ g/mL (W2)	Crude ethanolic extract of Leaves, at the daily dose of 250, 500 and 750 mg/kg/day, caused inhibition of growth of 32.7, 60.5 and 68.8% respectively	27, 16
<i>Fuerstia africana</i> T. C. E. Fries	The whole plants chloroform extract, IC50 was 3.76 μg/mL (D6)	Afteroraladministrationofstemsand leavesextractdose of300mg/kg/day, theparasitemiareductionon4thdaypost-infectionwas44 %.%.Afterintraperitonealadministrationofstemsandleavesextract, theparasitemiareduction on4thdayswas74%respectively.extract,theparasitemiarespectively.fth	28, 29
Gomphostemma niveum		The leaves aqueous extract 300, 400 and 500 mg/kg/day gave reduction of parasitemia of 11.43, 23.28, and 52.43% respectively The leaves aqueous extract at 300, 400, and 500 mg/kg/day, the level of parasitemia reduction was 29.76, 55.45, and 79.98%, respectively	30
Hoslundia opposita Vahl.	The root bark <i>n</i> -hexane extract, of IC ₅₀ was 5.6 µg/mL (K1)	The root bark <i>n</i> -hexane extract at 190 mg/kg body weight daily caused 26% inhibition of growth.	15
Leonotis leonurus ex Hort (yellow)	The IC ₅₀ of leaves ethanolic extract was 12.8 μ g/mL – at the early stages; 13.9 μ g/mL – at the late stages (K1)		16
Leucas cephalotes	Thewholeplantspetroleumether,Chloroform and methanolextract, IC50>5 μg/mL;3.96 μg/mL and >5 μg/mLrespectively (K1)		9
Marrubium astracanicum subsp. macrodon	The methanolic extract, n- hexane extract and chloroform extract of aerial parts, IC ₅₀ was 6.39 μg/mL. 4.64, μg/mL, 3.36 μg/mL respectively		31
Mentha piperita	Thewholeplantspetroleumether,Chloroform and methanolextract gave IC ₅₀ >5 μg/mL(K1)		9
Nepeta hindostana	The leaves petroleum ether, Chloroform and		9

	methanol extract, IC_{50} was 1.71 µg/mL: 1.52 µg/mL and >5 µg/mL respectively (K1)		
Nepeta nuda subsp. nuda	The aerial parts methanol extract, n-hexane extract and chloroform extract gave IC ₅₀ = 11.31 µg/mL. 3.37 µg/mL, 2.95 µg/mL respectively		31
Ocimum basilicum L.	The ethanolic extract of leaves, $IC_{50} = 43.81 \mu g/mL$		32
	Essential oil IC ₅₀ = 21 µg/mL (FcB1)		33
Ocimum canum Sims	Essential oil, IC ₅₀ = 20.6 µg/mL (FcB1)		33
Ocimum gratissimum L		Essential oil at 200, 300 and 500 mg/kg body weight, the level of parasitemia reduction were 55.0, 75.2 and 77.8% respectively	34
Ocimum lamiifloium Hochst. ex Benth		The leaves aqueous crude extract at 600 mg/kg body weight caused 35.53% inhibition of parasite growth.	35
Ocimum sanctum	The ethanolic leaves extract, $IC_{50} = 35.58$ $\mu g/mL$		32
Ocotea usambarensis Engl.	Stem bark MeOH; 0.98 μg/mL (D6), 2.40 μg/mL (W2)		36
<i>Origanum compactum</i> Benth.	The essential oil gave IC ₅₀ of 34 µg/mL Ethyl acetate extract: IC ₅₀ 33 µg/mL		37
<i>Otostegia integrifolia</i> Benth		The leaves methanolic extract of leaves at 25, 50 and 100mg/kg/day, the level of parasitemia reduction were 42.37, 75.28 and 80.52% respectively	38
Plectranthus Amboinicus (Lour) Spreng		The aqueous extract at 250 mg/kg and 500 mg/kg gave the level of parasitemia reduction after 96 hours of 67.9% and 76.2%, respectively.	39
<i>Plectranthus barbatus</i> Andr.	The ethanolic extract of leaves, IC ₅₀ = 6.5 μg/mL (K1)	The aqueous and organic (chloroform-methanol = 1:1) root extract at doses 100 mg/kg/day, the level of parasitemia reduction were 55.23% and 54.78%, respectively.	10
Roylea cinerea	The leaves petroleum ether, Chloroform and methanol extract gave IC_{50} = 4.39 µg/mL: 1.84 µg/mL and >5 µg/mL respectively (K1)		9
Salvia sclarea	The IC ₅₀ of methanolic extract, <i>n</i> -hexane extract and chloroform extract of aerial parts, IC ₅₀ = 6.60 μ g/mL. 3.78 μ g/mL, 2.54 μ g/mL respectively		31
Salvia dichroantha	The IC_{50} of methanolic extract, <i>n</i> -hexane extract and chloroform extract of aerial parts. $IC_{50} = 8.85$		31

	μg/mL. 4.17 μg/mL, 3.72 μg/mL respectively		
Salvia tomentosa	The methanolic extract, <i>n</i> - hexane extract and chloroform extract of aerial parts gave IC ₅₀ of 9.94 µg/mL. 3.47 µg/mL, 3.14 µg/mL respectively		31
Satureja thymbra	Essential oil, IC ₅₀ = 17-26 μg/mL (D10); IC ₅₀ = 9-11 μg/mL (W2)		40
Scutellaria havanensis Jacq.	The fresh aerial parts methanolic and chloroform extracts gave IC_{50} values of 32.2 and 7.7 μ g/mL, respectively.		41
Solenostemon monostachyus P. Beauv		The herbs extract (75– 225mg/kg) and fractions (chloroform and aqueous; 150 mg/kg) decreased parasitaemia level in mice: prophylactic (28.48–71.72%), suppressive (12.52–72.47%), and curative (22.4–82.34%)	42
Thymus herba-barona	Essential oil IC ₅₀ = 29,1 - >50 μg/mL (D10); 24,.2 μg/mL (W2)		40
<i>Zhumeria majdae</i> Rech.f. & Wendelbo	The <i>n</i> -hexane extract of roots, $IC_{50} = 2.1 \mu\text{g/mL}$.		44

The results of this review showed that that 31 plants of Lamiaceae family had been evaluated for their antimalarial activity, 25 plants were examined for their antimalarial effect by *in vitro* against *P. falciparum*, and ten plants were assessed for their antimalarial effect by in vivo against P. berghei in mice. Based on Jonville guidelines, antiplasmodial activities are grouped as follows: high (IC₅₀ <5 µg/mL), promising (5-15 µg/mL), low (15-50 μ g/mL) and inactive (IC₅₀> 50 μ g/mL)) (Jonville, 2008). From Table 2, plants extract that has high antiplasmodial purpose against P. falciparum, without seeing the strain type, is the chloroform extract from the whole plant of Fuerstia africana T. C. E. Fries. With an IC50 value of 3.76 µg/mL; chloroform extract of whole plants of Leucas cephalotes with IC_{50} of 3.96 µg/mL; *n*-hexane extract of aerial parts of Marrubium astracanicum subsp. Macrodon with IC50 value 4.64, µg/mL; extracts of petroleum ether and chloroform from the leaves of the Nepeta hindostane plant with IC₅₀, respectively 1.71 μ g/mL and 1.52 μ g/mL; methanolic extract, *n*-hexane, and chloroform of *Nepeta nuda* subsp. Nuda with IC₅₀ values of 11.31 µg/mL, 3.37 µg/mL, and 2.95 µg/mL, respectively; of of Ocotea methanolic extract stem bark usambarensis Engl. With IC₅₀ values of 0.98 µg/mL; extracts of petroleum ether and chloroform from the aerial

parts of Roylea cinereal with IC₅₀ values 4.39 µg/mL and 1.84 μg/mL respectively; *n*-hexane and chloroform extracts of the aerial parts of Salvia sclarea with IC50 3.78 μ g/mL, and 2.54 μ g/mL respectively; *n*-hexane and chloroform extracts of the aerial parts of Salvia dichroantha with IC₅₀ respectively 4.17 µg/mL and 2.54 μ g/mL; *n*-hexane and chloroform extracts of the aerial parts of Salvia tomentosa with IC_{50} 3.47 µg/mL and 3.14 µg/mL respectively; chloroform extracts from stembark of Vitex madiensis Oliv with IC₅₀ 2.36 µg/mL; n-hexane extract of Zhumeria majdae roots Rech.f. & Wendelbo with IC_{50} 2.1 µg / mL. Plants extract of Lamiaceae family that has the best antimalarial effect by in vivo test against P. berghei in mice, was methanol leaves extract of Otostegia integrifolia Benth with 100 mg/kg/day gave a reduction in parasitemia of 80.52%. These Lamiaceae plants with high antiplasmodial activity are very prospective to be further investigated and developed as candidates for antimalarial herbal medicines.

In this review, there are 17 plants of Lamiaceae family had been investigated for their active antimalarial compounds, as shown in Table 3.

Plants species	Isolated compound	^a antiplasmodia ¹ activity <i>in vitro</i> against <i>P. falciparum</i> , IC _{50 and} strains used ^b antimalarial activity in vivo	References
A' 1 ''	T • .•	against <i>P. berghei</i> in mice	25
Ajuga laxmannii	Isoorientin	9.7 μ g/mL (K1) ^a	25
Ajuga remota Benth	Ajugarin-1	23.0 μg/mL (FCA20/GHA) ^a	45
	Ergosterol-5,8-endoperoxide	8.2 μg/mL (FCA20/GHA) ^a	
<i>Fuerstia africana</i> T. C. E. Fries	Ferruginol	1.95 mg/ml (D6) ^a	29
Gomphostemma niveum	Gomphostenin	at 50, 100, 150 and 200 mg/kg/day gave suppression values 28.31, 54.63, 74.63 and 80.60% respectively against <i>P. berghei</i> (ANKA) in mice ^b	30
	Acetyl Gomphostenin	at 50, 100, 150 and 200 mg/kg/day gave percent suppression values 45.09, 82.92, 87.51 and 92.65 respectively against <i>P. berghei</i> (ANKA) in mice ^b	
<i>Hoslundia opposita</i> Vahl.	3-O-benzoylhosloppone	0,4 μg/mL (K1) ^a 0,22 μg/mL (NF 54) ^a	46
<i>Leucas mollissima</i> Wall.	Anisofolin A	4.39 μM ^a	47
	apigenin 7-O-β-D (– 6"-p-E- coumaroyl)-glucoside	35% inhibition at ten μ M ^a	47
<i>Otostegia integrifolia</i> Benth	Otostegindiol	At 25, 50 and 100mg/kg/day gave suppression values of 50.13, 65.58 and 73.16% respectively against <i>P. berghei</i> (ANKA) in mice	38
Perovskia abrotanoides	Cryptotanshinone	12.5 μM (3D7) ^a	48
	1β-hydroxycryptotanshinone	26.9 µM (3D7) ª	48
	1-oxocryptotanshinone	17.6 μM (3D7) ^a	48
	1-oxomiltirone	13.0 µM (3D7) ª	48
Phlomis brunneogaleata	Luteolin 7- O-beta- D- glucopyranoside	2.4 μg/mL ^a	49
¥	Chrysoeriol 7- O-beta- D- glucopyranoside	5.9 μg/mL ^a	49
<i>Plectranthus barbatus</i> Andr.	dehydroabietane	-	50
	5.6-Didehydro-7-hydroxy- taxodone	9.2 μM ^a	50
	Taxodione	8.5 μM ^a	50
	20-deoxocarnosol	11.1 μM ^a	50
	6α,11,12, -trihydroxy-7β,20- epoxy-8,11,13-abietatriene	31.6 µM ª	50
<i>Salvia hydrangea</i> DC. ex Benth.	Hydrangenone	1.4 μM (K1) ^a	51
Salvia leriifolia Benth.	Leriifoliol	0.4 μM (NF54) ^a	52
	Leriifolione	3.6 μM (NF54) ^a	52
Salvia sahendica	12-Deoxy-salvipisone	8.8 μM (K1) ^a	53
	Sahandinone	5.1 μM (K1) ^a	53
	12-Deoxy-6,/- dehydroroyleanone	17.8 μM (K1) ^a	53
	Δ ⁹ -Ferruginol	0.9 μM (K1) ^a	53
	Ferruginol	0.9 μM (K1) ^a	53
	7α-Acetoxyroyleanone	1.3 μM (K1) ^a	53
	Sahandol	$4.7 \mu M (K1)^{a}$	53
Caturaia narrifelia	Sahandone	$1/.2 \mu\text{M} (\text{K1})^{a}$	53
(Philippi) Epling		4.7 μg/ IIIL (KT) ^a	54

Table 3. Antiplasmodial compounds isolated from Lamiaceae fam	ily
---	-----

Tjitraresmi et al. / Antimalarial Activity of Lamiaceae Family Plants: Review

	Oleanolic acid	9.3 μg/mL (K1) ^a	54
	Eriodictyol	17.2 μg/mL (K1) ^a	54
Scutellaria havanensis	Wogonin	4.3 μg/mL (<i>P. berghei</i> ANKA) ^b	41
Jacq.			
Teucrium	Homalomenol C	1.2 μg/mL (FcB1) ^a	55
ramosissimum			
	4b- hydroxy-11,12,13-trinor-5-	3.3 μg/mL (FcB1) ^a	55
	eudesmen-1,7-dione		
	Oxo-T-cadinol	4.4 μg/mL (FcB1) ^a	55
Zhumeria majdae	11,14-dihydroxy-8,11,13-	8.65 μM (NF 54) ^a	44
Rech.f. & Wendelbo	abietatrien-7-one		
	Lanugon Q	15.6 μM (NF 54) ^a	44

From this literature reviewed, there are 40 active antimalarial compounds isolated from the Lamiaceae family, as shown in Table 3. The isolated antimalarial active compounds from the Lamiaceae family mostly was abietane diterpene and the other compounds are diterpenoids, triterpenoids, and flavonoids. Several active antimalarial compounds have been successfully isolated from some plants of the Lamiaceae family; it means that more plants of this tribe need to be investigated for their antimalarial activity to obtain new antimalarial drugs. Abietanes are a group of natural diterpenoids isolated from various plants. The biological activities of abietanes compounds are very diverse, so it becomes a fascinating material to be studied in the field of medicine or pharmacological community. Besides being contained in resins or plant extracts from the Araucariaceae, Phyllocladaceae, Cupressaceae, Pinaceae. and Podocarpaceae families, abietanes compounds are also found in many families of angiosperms such as Asteraceae, Celastraceae, Hydrocharitaceae, and Lamiaceae)55.

Isoorientin is a flavone-C-glycoside compound that isolated from methanolic extract of aerial parts of *Ajuga laxmannii*, and It was one of the significant constituents of *A. laxmannii*. Isoorientin has a promising antiplasmodial action against *P. falciparum* with IC₅₀ value of 9.7 µg/mL²⁵. *Ajuga remota* is the most commonly exploited medicinal herbs for malarial management in Kenya. Ajugarin-1 (diterpene) and ergosterol-5,8-endoperoxide (triterpene) were isolated from chloroform extract of *Ajuga remota* aerial parts. The two isolates were assessed for their in vitro antiplasmodial activity against *P. falciparum* (FCA 20/GHA). Ajugarin-1 has moderate antiplasmodial effect with IC₅₀ value of 23.0 µg/mL and ergosterol- 5,8endoperoxide has a promising antiplasmodial activity with IC₅₀ amount of 8.2 µg/mL⁴⁴.

Ferruginol is an abietane diterpenoid isolated from the methanolic extract of aerial parts of *F. africana*. The existence of ferruginol in *F. africana* is first known in the genus Fuerstia, and previously ferruginol was also found in the genus Coleus (syn: Plectranthus) dan Salvia⁵⁶. Antimalarial activity of ferruginol was determined using the D6 (chloroquine-sensitive) strains of *P. falciparum*, and the result, ferruginol, has strong antimalarial activity with IC_{50} value of 1.95 mg/mL (control, chloroquine has IC_{50} values of 1.94 ng/mL)²⁹.

Two novel clerodane diterpenes compounds, Gomphostenin and acetyl Gomphostenin, was isolated from aqueous and the *Gomphostemma niveum* leaves chloroform extract. In vivo antimalarial evaluation against *P. berghei* in mice of extracts aqueous extract, *Gomphostemma niveum* leave chloroform extract, Gomphostenin, and acetyl Gomphostenin showed that acetyl Gomphostenin has the best antiplasmodial activity with 92.65% of chemosuppression at a dose level of 200 mg/kg per day. In comparison, gomphostenin gave 80.60% chemosuppression at a dose level of 200 mg/kg per day. The studies have revealed that clerodane class of diterpenes Gomphostenin and acetyl Gomphostenin certainly is a promising compound for malaria management and a valuable antimalarial chemotherapy³⁰. Hoslundia opposita Vahl. is a little bush and broadly disseminated in East and West⁵⁸? The 3-0benzovlhosloppone, 3-O-cinnamovlhosloppone, 3-0benzovlhinokiol, and 3-0-benzovlhosloguinone are abietane-type esters, secluded from the root bark of Hoslundia opposita Vahl. Only 3-O-benzoylhosloppone can repress the development of P. falciparum (the multidrug resistant strain K) in vitro with an IC₅₀ estimation of 0,4 μ g/mL. This compound must be analyzed further to get one of the possibilities for malarial drugs⁴⁶.

Anisofolin A and apigenin 7-O- β -D (- 6"-p-E-coumaroyl)glucoside are flavonoids isolated from methanolic extract of *Leucas mollissima* Wall. roots. These compounds were assessed for their antiplasmodial effect against *P. falciparum* (3D7). Anisofolin A has an antimalarial effect with IC₅₀ values of 4.39 µM and apigenin 7-O- β -D (- 6"-p-E-coumaroyl)-glucoside can inhibit *P. falciparum* development (35 % inhibition at 10 µM) ⁴⁷.

The genus Otostegia of Lamiaceae family consists of 15 species. The plants of the families are endemic plants of the northern part of tropical Africa to the south-western and Central Asia. Otostegindiol is the labdane diterpenoids that separated from an active ethyl acetate fraction, and this compound produced chemosuppressive effect at 100 mg/kg/day gave 73.16% suppression values. The antiplasmodial activity of the leaves extracts of *O. integrifolia* makes this plant extract potential as the antimalarial herbal medicine candidate ³⁸.

Cryptotanshinone; 1β-hydroxycryptotanshinone; 1oxocryptotanshinone; and 1-oxomiltirone were tanshinones that separated from *Perovskia abrotanoides* roots. Tanshinones are 20-norditerpenenes with an abietane-type skeleton containing a quinone moiety in the C-ring. The four tanshinone compounds were evaluated for their antiplasmodial effect against *P. falciparum* (3D7) and the IC₅₀ values in the ranging 5-45 µM ⁴⁸.

The *Phlomis brunneogaleata* (Lamiaceae) extract was fractionated by anti-plasmodium activity-guided and led to the isolation of two flavone glycosides: Luteolin 7- O-beta- D-glucopyranoside and chrysoeriol 7- O-beta- D-glucopyranoside. The Luteolin 7- O-beta- D-glucopyranoside has a strong antiplasmodial activity against. *falciparum* with IC₅₀ values of 2.4, while chrysoeriol 7- O-beta- D-glucopyranoside has a promising antiplasmodial activity with IC₅₀ values of 5.9 μ g/mL⁴⁹.

The genus Plectranthus of Lamiaceae family is an assortment of plants that have various organic exercises and use in conventional recuperating rehearses. The genus contains around 300 species and dispersed in tropical and subtropical zones of Africa, Asia, and Australia⁵⁹. Five abietane-type diterpenes were secluded from the aerial parts of *Plectranthus barbatus*. The 5,6-didehydro-7-hydroxy taxodone has moderate effectt against *P. falciparum*. Taxodione; 20-deoxocarnosol, and 6α ,11,12, -trihydroxy-7 β ,20-epoxy-8,11,13-abietatriene indicated a high antiprotozoal impact yet this was because of high cytotoxicity, while dehydroabietane showed up no antiprotozoal potential⁵⁰.

The genus Salvia is a rich origin of structurally differing terpenoids. The capacity to synthesize isoprenoids with unusual scaffolds is is one of the most distinctive highlights of Salvia specie⁵⁷. Hydrangenone (was a colorless needle separated from the roots of *Salvia hydrangea* DC. Ex Benth n-hexane extract. This compound has antiplasmodial action against *P. falciparum* with an IC₅₀ value of 1.4 µM⁵¹. Phytochemical investigation of the lipophilic extract of Salvia leriifolia roots led to the newly rearranged abietane diterpenoids leriifoliol and leriifolione. The genus is described by the presence of a broad range of isoprenoids, including sesterterpenoids and di- and triterpenoids, with unique carbon framework. The stilbene-like abietane diterpenoid leriifoliol and leriifolione, a unique fivemembered C-ring abietane diterpenoid from the roots, are examined. Leriifoliol exhibited an IC₅₀ of 0.4 µM against P. falciparum⁵².

Bioassay-guided isolation of a *Satureja parvifolia* methanolic extract prompted to the separation of flavonoid eriodictyol, and two triterpenoic acids: ursolic and oleanolic acids as its active compounds against *P. falciparum* K1. These compounds are reported as constituents of *S. parvifolia* for the first time in this research. Ursolic acid showed an IC₅₀ of 4.9 μ g/ml, luteolin 6.4 μ g/ml, oleanolic acid 9.3 μ g/ml, and eriodictyol 17.2 μ g/ml against *P. falciparum* K1. Antiplasmodial effect of eriodictyol and luteolin is described in the journal. Ursolic acid gave a strong antiplasmodial activity, while luteolin, oleanolic acid, and erodictyol gave a promising antiplasmodial activity⁵⁴.

The leaves and stems of *S. havanensis* are characterized by a large deposit of flavonoids. The methanol and chloroform extracts of *S. havanensis* possess antiplasmodial activities. Wogonin was identified as a significant antiplasmodial active compound of leaves chloroform extract against *P. berghei* protozoa⁴¹.

Tuecrium is a genus from the Lamiaceae family that consists of more than 300 plant species. The previous research reveals that the plants from this teucrium genus contain essential oils, monoterpenoids and sesquiterpenoids and oxygenated sesquiterpenoids. Teucrium genus is also one of the vital sources of diterpenoids with neoclerodane skeleton. Triterpenoids, sesquiterpenoids, and steroids, flavonoids, also had been isolated from plants of this genus. Triterpenoids, steroids, sesquiterpenoids, and flavonoids were also separated from these plants⁶¹. Sesquiterpenes compound, homalomenol C, 4bhydroxy-11,12,13-trinor-5eudesmen-1,7-dione, and oxo-T-cadinol, were separated from the ethyl acetate extract of the aerial parts of *Teucrium ramosissimum* bio guided by the antiplasmodial activity 55.

Salvia is the most prominent genus of the Lamiaceae family. It has over 900 species found all through the world. A few of these species have been appplied as therapeutic,

fragrant, and ornamental plants 7. Salvia species are especially abundant in diverse diterpenoids⁶². Prior phytochemical study of the aerial parts of S. sahendica guided to discovery of sesterterpenes, nor-sesterterpenes, nor-diterpenes, while rearranged abietane and diterpenoids have been listed from the roots⁶³. There are eight abietane-type diterpenoids separated from aerial parts of S. sahendica, and they were assessed for their in vitro antiplasmodial effect. The IC50 values of the compounds extended from 0.8 µM to over 8.8 µM against P. falciparum (K1), Ferruginol; Δ9-ferruginol; and 7acetoxy royleanone were the foremost dynamic antiplasmodial compounds, followed by sahandol; sahandinone; 12-deoxy-salvipisone; and sahandone 53. Some active antimalarial compounds from this plant have a potential to become new antimalarial drugs so that further research is needed.

The hexane extract from *Zhumeria majdae* Rech.f. and Wendelbo roots indicated predominant movement against *P. falciparum* with IC₅₀ estimations of 2.1 µg/ml. From eight abietane-type diterpenoids that disengaged and recognized in roots, only 11,14-dihydroxy-8,11,13-abietatrien-7-one displayed promising natural movement against P. falciparum (IC₅₀ 8.65 µM), and lanugon Q demonstrated an IC₅₀ estimation of 15.6 µM. All in all, 11,14-dihydroxy-8,11,13-abietatrien-7-one and Lanugon Q could be potential for antiplasmodial agent⁴⁴.

In this reviewed article, the most antimalarial active compounds isolated from the Lamiaceae family are diterpenoids (28 compounds), especially abietane type diterpenoids (18 compounds). Other groups of active antimalarial compounds from this plant family are flavonoids (6 compounds), triterpenoids (2 compounds), isoprenoid heptacyclic (1 compound) and sesquiterpene (3 compounds)

CONCLUSION

Lamiaceae family is proven to be a source of plants that have antimalarial activity. This can be seen from the traditional use of Lamiaceae tribal plants as malaria drugs in various countries, the number of plant extracts that have high antimalarial activity and also many active antimalarial substances isolated from plants of Lamiaceae family, but they still need to be further examined to become new antimalarial drugs.

REFERENCES

- 1. Kajfasz P. Malaria prevention. International Maritime Health. 2009;60(1-2):67-70.
- Mueller I, Zimmerman PA, Reeder JC. Plasmodium malariae and Plasmodium ovale--the "bashful" malaria parasites. *Trends Parasitol*. 2007;23(6):278-283.
- 3. Collins WE. Plasmodium knowlesi: a malaria parasite of monkeys and humans. *Annu Rev Entomol.* 2012; 57:107-121.
- 4. Beare NA, Taylor TE, Harding SP, Lewallen S, Molyneux ME. Malarial retinopathy: a newly established diagnostic sign in severe malaria. The American journal of tropical medicine and hygiene. 2006 Nov 1;75(5):790-7.
- 5. Olliaro PL, Bloland PB. Clinical and public health implications of antimalarial drug resistance. InAntimalarial Chemotherapy 2001 (pp. 65-83). Humana Press, Totowa, NJ.
- 6. Wellems TE, Plowe CV. Chloroquine-resistant malaria. *J Infect Dis.* 2001;184(6):770-776.

- Harley, R.M., Atkins S., A. L. Budantsev et al., "Labiatae," in Flowering Plants · Dicotyledons: Lamiales (except Acanthaceae including Avicenniaceae), J. W. Kadereit, Ed., pp. 167–275, Springer, Berlin, Germany, 2004.
- Bisio A, Pedrelli F, D'Ambola M, Labanca F, Schito AM, Govaerts R, et al. Quinone diterpenes from Salvia species: chemistry, botany, and biological activity. Phytochem Rev. 2019;18(3):665–842.
- 9. Dua VK, Verma G, Agarwal DD, Kaiser M, Brun R. Antiprotozoal activities of traditional medicinal plants from the Garhwal region of North West Himalaya, India. *J Ethnopharmacol*. 2011;136(1):123-128.
- Al-Musayeib NM, Mothana RA, Matheeussen A, Cos P, Maes L. In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsula region. *BMC Complement Altern Med.* 2012; 12:49. Published 2012 April 20.
- 11. Mukungu N, Abuga K, Okalebo F, Ingwela R, Mwangi J. Medicinal plants used for management of malaria among the Luhya community of Kakamega East sub-County, Kenya. *J Ethnopharmacol*. 2016; 194:98-107.
- 12. Mujtaba Shah G, Abbasi AM, Khan N, et al. Traditional uses of medicinal plants against malarial disease by the tribal communities of Lesser Himalayas-Pakistan. *J Ethnopharmacol*. 2014;155(1):450-462.
- 13. Tariq A, Adnan M, Amber R, Pan K, Mussarat S, Shinwari ZK. Ethnomedicines and anti-parasitic activities of Pakistani medicinal plants against Plasmodia and Leishmania parasites. *Ann Clin Microbiol Antimicrob*. 2016;15(1):52.
- 14. Odoh UE, Uzor PF, Eze CL, Akunne TC, Onyegbulam CM, Osadebe PO. Medicinal plants used by the people of Nsukka Local Government Area, south-eastern Nigeria for the treatment of malaria: An ethnobotanical survey. *J Ethnopharmacol.* 2018; 218:1-15.
- 15. Weenen H, Nkunya MH, Bray DH, Mwasumbi LB, Kinabo LS, Kilimali VA. Antimalarial Activity of Tanzanian Medicinal Plants1. Planta medica. 1990 Aug;56(04):368-70.
- 16. Moyo P, Botha ME, Nondaba S, et al. In vitro inhibition of Plasmodium falciparum early and late stage gametocyte viability by extracts from eight traditionally used South African plant species. *J Ethnopharmacol.* 2016; 185:235-242.
- 17. Mesfin A, Giday M, Animut A, Teklehaymanot T. Ethnobotanical study of antimalarial plants in Shinile District, Somali Region, Ethiopia, and in vivo evaluation of selected ones against Plasmodium berghei. *J Ethnopharmacol.* 2012;139(1):221-227.
- Muganza DM, Fruth BI, Lami JN, Mesia GK, Kambu OK, Tona GL, Kanyanga RC, Cos P, Maes L, Apers S, Pieters L. In vitro antiprotozoal and cytotoxic activity of 33 ethonopharmacologically selected medicinal plants from Democratic Republic of Congo. Journal of ethnopharmacology. 2012 May 7;141(1):301-8.
- Adebayo JO, Krettli AU. Potential antimalarials from Nigerian plants: a review. J Ethnopharmacol. 2011;133(2):289-302. d
- Tor-Anyiin TA, Sha'ato R, Oluma HO. Ethnobotanical survey of anti-malarial medicinal plants amongst the Tiv people of Nigeria. Journal of herbs, spices & medicinal plants. 2003 Sep 24;10(3):61-74.
- 21. Makonnen E, Debella A, Zerihun L, Abebe D, Teka F. Antipyretic properties of the aqueous and ethanol

extracts of the leaves of *Ocimum suave* and *Ocimum lamiifolium* in mice. *J Ethnopharmacol.* 2003;88(1):85-91.

- 22. Kiraithe MN, Nguta JM, Mbaria JM, Kiama SG. Evaluation of the use of *Ocimum suave* Willd. (Lamiaceae), *Plectranthus barbatus* Andrews (Lamiaceae) and *Zanthoxylum chalybeum* Engl. (Rutaceae) as antimalarial remedies in Kenyan folk medicine. *J Ethnopharmacol*. 2016; 178:266-271.
- Ajibesin KK, Ekpo BA, Bala DN, Essien EE, Adesanya SA. Ethnobotanical survey of Akwa Ibom State of Nigeria. *J Ethnopharmacol*. 2008;115(3):387-408.
- 24. Bhat, J. A., Kumar, M., & Bussmann, R. W. (2013). Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India. Journal of Ethnobiology and Ethnomedicine, 9(1), 1.
- 25. Atay I, Kirmizibekmez H, Kaiser M, Akaydin G, Yesilada E, Tasdemir D. Evaluation of in vitro antiprotozoal activity of *Ajuga laxmannii* and its secondary metabolites. *Pharm Biol.* 2016;54(9):1808-1814.
- Cocquyt K, Cos P, Herdewijn P, Maes L, Van den Steen PE, Laekeman G. Ajuga remota Benth.: from ethnopharmacology to phytomedical perspective in the treatment of malaria. Phytomedicine. 2011 Nov 15;18(14):1229-37.
- 27. Chandel S, Bagai U. Antiplasmodial activity of Ajuga bracteosa against *Plasmodium berghei* infected BALB/c mice. *Indian J Med Res.* 2010; 131:440-444.
- Muganga R, Angenot L, Tits M, Frédérich M. In vitro and in vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds. *Planta Med.* 2014;80(6):482-489.
- 29. Koch A, Orjala J, Mutiso PC, Soejarto DD. An antimalarial abietane diterpene from Fuerstia africana TCE Fries. Biochemical systematics and ecology. 2006;3(34):270-2.
- Sathe M, Ghorpade R, Srivastava AK, Kaushik MP. In vivo antimalarial evaluation of Gomphostenins. Journal of ethnopharmacology. 2010 Jul 6;130(1):171-4.
- Kirmizibekmez H, Atay I, Kaiser M, Yesilada E, Tasdemir D. In vitro antiprotozoal activity of extracts of five Turkish Lamiaceae species. *Nat Prod Commun.* 2011;6(11):1697-1700.
- 32. Inbaneson SJ, Sundaram R, Suganthi P. In vitro antiplasmodial effect of ethanolic extracts of traditional medicinal plant Ocimum species against *Plasmodium falciparum. Asian Pac J Trop Med.* 2012;5(2):103-106.
- Akono Ntonga, P., Baldovini, N., Mouray, E., Mambu, L., Belong, P., & Grellier, P. (2014). Activity of Ocimum basilicum, Ocimum canum, and Cymbopogon citratus essential oils against Plasmodium falciparum and mature-stage larvae of Anopheles funestuss. Parasite, 21, 33.
- 34. Tchoumbougnang F, Zollo PH, Dagne E, Mekonnen Y. In vivo antimalarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei. *Planta Med*. 2005;71(1):20-23.
- 35. Kefe A, Giday M, Mamo H, Erko B. Antimalarial properties of crude extracts of seeds of Brucea antidysenterica and leaves of Ocimum lamiifolium. BMC complementary and alternative medicine. 2016 Dec 1;16(1):118.

- Muthaura CN, Rukunga GM, Chhabra SC, Mungai GM, Njagi EN. Traditional antimalarial phytotherapy remedies used by the Kwale community of the Kenyan Coast. J Ethnopharmacol. 2007;114(3):377-386.
- El Babili F, Bouajila J, Souchard JP, et al. Oregano: chemical analysis and evaluation of its antimalarial, antioxidant, and cytotoxic activities. *J Food Sci.* 2011;76(3):C512-C518.
- Endale A, Bisrat D, Animut A, Bucar F, Asres K. In vivo antimalarial activity of a labdane diterpenoid from the leaves of Otostegia integrifolia Benth. *Phytother Res.* 2013;27(12):1805-1809.
- Periyanayagam K, Nirmala Devi K, Suseela L, Uma A, Ismail M. In vivo antimalarial activity of leaves of Plectranthus amboinicus (lour) spreng on Plasmodium berghei yoelii. *J Commun Dis*. 2008;40(2):121-125.
- 40. Dell'Agli M, Sanna C, Rubiolo P, et al. Anti-plasmodial and insecticidal activities of the essential oils of aromatic plants growing in the Mediterranean area. *Malar J*. 2012; 11:219. Published 2012 July 2.
- 41. Fernández-Calienes Valdés A, Monzote Fidalgo L, Sariego Ramos I, et al. Antiprotozoal screening of the Cuban native plant *Scutellaria havanensis*. *Pharm Biol*. 2016;54(12):3197-3202.
- 42. Okokon J, Davis KA, Azare BA. Antipyretic and antimalarial activities of Solenostemon monostachyus. *Pharm Biol.* 2016;54(4):648-653.
- 43. Ondo JP, Lekana-Douki JB, Bongui JB, et al. In vitro antiplasmodial activity and cytotoxicity of extracts and fractions of *Vitex madiensis*, medicinal plant of Gabon. *Trop Med Int Health*. 2012;17(3):316-321.
- 44. Zadali R, Nejad Ebrahimi S, Tofighi Z, et al. Antiprotozoal activity of diterpenoids isolated from Zhumeria majdae absolute configuration by circular dichroism [published online ahead of print, 2020 May 11]. Daru. 2020
- Kuria KA, Chepkwony H, Govaerts C, et al. The antiplasmodial activity of isolates from *Ajuga remota*. J Nat Prod. 2002;65(5):789-793.
- Achenbach, H., Waibel, R., Nkunya, M. H. H., & Weenen, H. (1992). Antimalarial compounds from *Hoslundia opposita*. Phytochemistry, 31(11), 3781–3784.
- Chinchansure, Ashish & Arkile Shingare, Manisha & Shukla, Anurag & Dhanasekaran, Shanmugam & Joshi, Swati. (2015). *Leucas mollissima*, a Source of Bioactive Compounds with Antimalarial and Antimycobacterium Activities. Planta Medica. 2. e1e4.
- 48. Sairafianpour M, Christensen J, Staerk D, et al. Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1,2-quinones from *Perovskia abrotanoides*: a new source of tanshinones. J Nat Prod. 2001;64(11):1398
- 49. Kirmizibekmez H, Calis I, Perozzo R, et al. Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP Reductase, a crucial enzyme in fatty acid biosynthesis. Planta Med. 2004;70(8):711-717
- Mothana RA, Al-Said MS, Al-Musayeib NM, et al. In vitro antiprotozoal activity of abietane diterpenoids isolated from Plectranthus barbatus Andr. Int J Mol Sci. 2014;15(5):8360,Äê8371.
- 51. Farimani MM, Taheri S, Ebrahimi SN, et al. Hydrangenone, a new isoprenoid with an unprecedented skeleton from Salvia hydrangea. *Org Lett*. 2012;14(1):166-169.

- 52. Farimani MM, Khodaei B, Moradi H, et al. Phytochemical Study of *Salvia leriifolia* Roots: Rearranged Abietane Diterpenoids with Antiprotozoal Activity. *J Nat Prod.* 2018;81(6):1384-1390.
- 53. Ebrahimi SN, Zimmermann S, Zaugg J, Smiesko M, Brun R, Hamburger M. Abietane diterpenoids from Salvia sahendica–antiprotozoal activity and determination of their absolute configurations. Planta medica. 2013 Nov;29(02):150-6.
- 54. Van Baren C, Anao I, Leo Di Lira P, et al. Triterpenic acids and flavonoids from *Satureja parvifolia*. Evaluation of their antiprotozoal activity. Z Naturforsch C J Biosci. 2006;61(3-4):189-192.
- 55. Henchiri H, Bodo B, Deville A, et al. Sesquiterpenoids from *Teucrium ramosissimum*. Phytochemistry. 2009;70(11-12):1435-1441. DOI: 10.1016/j.phytochem.2009.08.012
- González MA. Aromatic abietane diterpenoids: their biological activity and synthesis. Nat Prod Rep. 2015;32(5):684-704.
- 57. Lin, H.C., Ding, H.Y., & Chang, W.L. (2001). Two New Fatty Diterpenoids fromSalviamiltiorrhiza. Journal of Natural Products, 64(5), 648–650.
- 58. Hutchinson, J. and Dalziel, J. M. (1963) Flora of West Tropical Africa 2nd Edn. Vol. 2, p. 456.
- 59. Lukhoba CW, Simmonds MS, Paton AJ. Plectranthus: A review of ethnobotanical uses. Journal of ethnopharmacology. 2006 Jan 3;103(1):1-24.
- 60. Piozzi, F., Bruno, M., Rosselli, S., Maggio, A., 2005. Advances on the chemistry of furano-diterpenoids from Teucrium genus. Heterocycles 65, 1221–1234.
- Ulubelen, A., Topcu, G., Sonmez, U., 2000. Chemical and biological evaluation of genus Teucrium. In: Attaur-Rhaman (Ed.), Studies in Natural Products Chemistry, Bioactive Natural Products. Part D, vol. 23. Elsevier Science Publishers, Amsterdam, pp. 591– 648.
- 62. Moridi Farimani M, Mazarei Z. Sesterterpenoids and other constituents from Salvia lachnocalyx Hedge. Fitoterapia. 2014; 98:234–240.
- 63. Jassbi AR, Mehrdad M, Eghtesadi F, Ebrahimi SN, Baldwin IT. Novel rearranged abietane diterpenoids from the roots of *Salvia sahendica*. Chem Biodivers. 2006; 3:916–922.