
Characteristic Studying and Biological Effect of Synthesized Complexes Pd(II) and Hg(II) with Uracil dithiocarbamate and Phosphine's

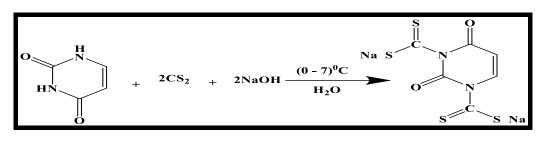
Qader Abdullah Shannak¹, Mawlood Khalid mawlood², Hamza Raid Hebeb³ ¹Biotechnology and environmental center/ University of Fallujah/Iraq ²Samarra University/ Quality and Performance Department/Iraq ³Salahuddin Education Directorate/MOE/Iraq **Corresponding aurhor:** Qader Abdullah Shannak

E-mail: gaderabdullahah@uofallujah.edu.ig

Article History:	Submitted: 16.01.2020	Revised: 21.02.2020	Accepted: 26.03.2020
Homogeneous and Heteroge with mixed ligands of dithicc phosphines . The formed con (U-DTC) ₂ (Phosphine)n] Ura Pd(II),Hg(II) n=2 or 4 mole. Th using the micro elementa conductivity, spectra metha activity of ligands and comp bacteria Staphylococcus aur	nthesis and characterization of some neous binuclear complexes of Pd(II),Hg(II) arbamate derived from Uracil and tertiary mplexes have the general formula of [M2 cil bis(dithiocarbamate) = (-DTC) M = ne synthesized complexes were identified al analysis (C.H.N.S), electrical molar ods (IR and ¹ H, ³¹ P-NMR). Antibacterial plexes was evaluated with two types of eus (gram positive) and Escherichia coli o the results obtained from the physical	planer shape, and mercury (II arrangement. Keywords: Dithiocarbamate, bis(dithiocarbamate) Correspondence: Qader Abdullah Shannak Biotechnology and Environmental (E-mail: gaderabdullahah@uofallujah DOI: 10.31838/srp.2020.3.94	
INTRODUCTION Dithiocarbamates are S. I	N containing ligand, which display	ě i	aromatic organic compounds I ions at high oxidation states

Dithiocarbamates are S, N containing ligand, which display a rich and varied coordination chemistry with a wide range of transition and main group metal complexes ^[1]. The study of complexes containing sulfur as donor atoms has become an important subject in the field of coordination chemistry ^[2]. Dithiocarbamate compounds are organic compounds (R RNCSS), where R, **R** are homogeneous or heterogeneous aliphatic or aromatic organic compounds which are stable with metal ions at high oxidation states due to the strength of the unique bond C-S.It has the electronic system S-C-S $^{[3]}$, and it is in a state of resonance, Where the flowing of additional electrons takes place from nitrogen to carbon from π orbitals) $^{[4]}$ as in the following diagram

Due to the significant importance of thiocarbamate derivatives which can be used as potent medicine against cancer and drugs ^[5]. In agriculture, industry, and biology, also they are used as antimicrobial and immunological regulatory materials [6,7]. And they are used as an intermediate in some reactions. Among the important reactions of dithiocarbamate is the oxidation to thiuram disulfide compounds [8]. Using oxidizing agents such as K₃ [Fe (CN₆)], I2 and hydrogen peroxide (H₂O₂), these types of ligands contain the active group S-S [9]. Such active group might react with metals through the cleavage or without cleavage of S-S bond. Phosphine and diphosphine are important ligands in transition-metal catalyzed reactions, and the electronic and steric effects of the phosphine have pronounced influence on the organic transformation that takes at the transition metal center ^[10,11]. While the Bis (diphenyphosphino) ethane and the Bis (diphen yphosphino) propane(dppp)behave as bidentate chelate ^[12], or behave as bridge ligands between two metal atoms [13,14], the complexes of phosphine with palladium used as assistant agent cyclic or heterocyclic by increase stability of medial compound $^{\rm [15]}$. In the present work, we report the synthesis and characterization of some new complexes obtained by the reaction of Pd(II), Hg(II)salts with mixed ligands of dithiocarbamate and a tertiary phosphine.

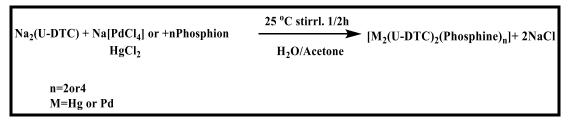

EXPERIMENTAL

IR-spectra were recorded on the (FTIR– 600 Spectrophotometer) in the (350-4000) cm-1range using KBr discs. Micro elemental analysis (C.H.N.S) conducted by using (Euro EA 3000). Molar Conductivities for complexes were measured at10-3 M solution in DMSO at 25° C using (Cond 7110). Melting points were obtained using (Electro thermal 9300). The ¹H- ³¹P-NMR spectra were performed (solvent DMSO-d⁶) on (Brucker 400MHz), at the University of Sinop, Turkey.

Starting materials

All chemicals and phosphine ligands were commercial products and were used as supplied.

Synthesis of ligand Uracil bis(dithiocarbamate) (U-DTC) was prepared by a previously described method ^[16].


Chemical formula	Color	Melting	Melting Micro elemental analysis calculate (found)					
		point/ C	S%	N%	Н%	С%		
$C_6H_2N_2Na_2O_2S_4$	Light	358-359	41.59	(9.00) 9.09	(0.60) 0.65	23.37		
307.88	orange		(41.49))(32.32		

Synthesis of Dithiocarbamate complexes with phosphine.

Synthesis of [Pd2(T-DTC)2(dppe)2].

This complex was synthesized by the following procedure: A solution of $Na_2[PdCl_4](0.018g, 0.000062mol)$ in distilled water(5ml) was added to a solution of Na_2U -DTC (0.021g, 0.000062mol) in distilled water (5 ml), the mixture

was stirred at room temperature for 1hour). The colour of the solution was changed from colorless to dark brown then a solution of dppe (0.025g, 0.000062mol) in 5ml of acetone was added. The mixture was left stirring for half an hour, a light brown precipitate was formed, and it was filtered off and washed with a small amount of distilled wate (3 Ntimes) and dried in an oven at 50 °C.

The rest of the complexes listed in (Table 2) were synthesized in the same way as mentioned above using a proper number of moles of the metal salts and ligands.

RESULTS AND DISCUSSION

Physical and spectral techniques were used for the identification of synthesized complexes. The solid prepared complexes are soluble in most common solvents such as DMSO, DMF, THF. The molar conductivity values of all

complexes in DMSO solvent of 10-3 M at 25° C (Table 2) indicate that complexes are non-electrolyte. This is consistent with the stoichiometry assumed for the complexes [M (U-DTC)2(Phosphine)n]. The micro elemental analysis measurements for all complexes gave approximated values when are compared with theoretical values,(Table2) includes some physical properties and (C.H.N.S) results for the synthesized complexes.

No.	Complexes	Color	M.P/ °C	yield	Molar cond./ mole-	Micro	eleme	ntal	analysis
				%	¹ , cm ⁻¹ hom	calculate	ed (foun	d)	
						С%	H%	N%	S%
1.	[pd ₂ (U-DTC) ₂ (dppm) ₂]	Light	139138-	66	0.13	17.03	3.72	3.71	49.44
		orange				17.21)	3.70)	3.77)	49.50)
						((((
2.	[pd ₂ (U-DTC) ₂ (pph ₃) ₄]	orange	210-212	71	0.27	14.36	3.14	3.68	56.47
						14.62)	3.22)	3.68)	56.56)
						((((
3.	[pd ₂ (U-DTC) ₂ (dppe) ₂]	Light	-191190	69	0.26	50.74	3.61	3.59	16.42
		orange				(50.63	(3.53	(3.40	(16.20
))))

Table 2: Some physical properties, analytical, conductance data and yield % of the complexes

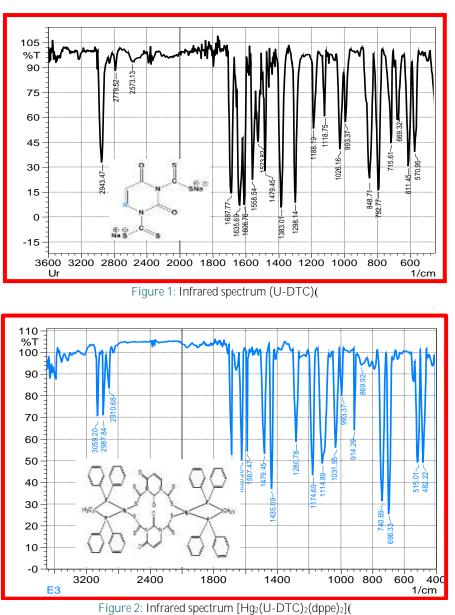
Qader Abdullah Shannak et al / Characteristic Studying and Biological Effect of Synthesized Complexes Pd (II) and Hg (II) with Uracil dithiocarbamate and phosphine's

1		brouw	144 146	76	0.54	16.40	2.50	2 4 1	50.74
4.	[pd ₂ (U-DTC) ₂ (dppp) ₂]	brouw	144-146	76	0.54	16.42	3.59	3.41	50.74
		n				16.62)	3.62)	3.43)	50.68)
						((((
5.	[Hg ₂ (U-DTC) ₂ (dppm) ₂]	white	271270-	62	0.78		•••••		
6.	[Hg ₂ (U-DTC) ₂ (pph ₃) ₄]	Gray	-229228	68	0.73	12.80	2.80	3.42)51.57
						12.85)	2.78)	3.20)	(51.32
						((()
7.	[Hg ₂ (U-DTC) ₂ (dppe) ₂]	Light	241-243	60	0.16				••••
		gray							
8.	[Hg ₂ (U-DTC) ₂ (dppp) ₂]	Dark	255-257	58	0.19	45.92	3.40	3.15	14.42
		gray				(45.68	(3.33	(2.98	(14.28
))))

The prominent infrared spectral data of prepared ligand and its complexes are given in (Table 3).

The IR spectra of the complexes were compared with those of the free ligand in order to determine the coordination sites that may be involved in bonding.

In U-DTC, the infrared bands observed at 1687 cm⁻¹, 1479 cm-1, (1118) and (993) cm⁻¹ have been assigned to v C=O, v (C-N), v (C=S) and(C-S) respectively ^[16]. In IR spectra of all complexes, the C=O stretching vibration are shifted to higher values 1653-1691cm⁻¹, suggesting that the carbonyl group is not involved in bonding in coordination with central metal ion ^[17].


Also, the complexes spectra showed bands at 1435-1487 cm⁻¹ which is assigned to(C-N) group and those values, indicating that (C-N)group is not coordinated $^{\rm [18]}$.

A noticeable shift to lower frequencies for bands of (C-S) (891-1001) cm⁻¹, and (1101-1188)cm⁻¹ in the complexes were observed .

The v (C-S) frequencies can be used for distinguishing between the mono and bidentate binding of dithiocarbamate ligand with the metal ion, the presence of two bonds in spectra of the complexes refer to v (C-S) bonds in spectra of the complexes refer to monodentate coordination of dithiocarbamate ligand with the metal ion ^[19]. The new bands in the region (692-700) cm⁻¹and (1429-1438)cm⁻¹ were assigned to v (P-C) and v (P-Ph) respectively indicating that phosphine ligands are coordinated with metal center ^[13].

Complexes	υ (C-H) Alph. Ar.	v (C=C)	C=O)(v	v (C-N)	υ (C=S) υ (C-S)	υ (P-Ph)	υ (C-Ph)
U-DTC	2951	1595	1687	1479	1118 993		
[pd ₂ (U-DTC) ₂ (dppm) ₂]	2937 3070	1597	1683	1477	1074	1431	700
[pd ₂ (U-DTC) ₂ (pph ₃) ₄]	2974 3057	1620	1685	1479	1093 997	1433	694
[pd ₂ (U-DTC) ₂ (dppe) ₂]	2937 3063	1577	1671	1475	1074 995	1431	694
[pd ₂ (U-DTC) ₂ (dppp) ₂]	2937 3057	1626	1696	14783	1014 964	1429	696
[Hg ₂ (U-DTC) ₂ (dppm) ₂]	2970 3053	1604	1681	1467	1097	1433	692
[Hg ₂ (U-DTC) ₂ (pph ₃) ₄]	2922 3023	1622	1691	1479	1022 997	1429	694
[Hg ₂ (U-DTC) ₂ (dppe) ₂]	2987 3059	1620	1685	1479	1031 993	1435	696
[Hg ₂ (U-DTC) ₂ (dppp) ₂]	2941 3059	1606	1676	1481	1095 997	1433	696

Qader Abdullah Shannak et al / Characteristic Studying and Biological Effect of Synthesized Complexes Pd (II) and Hg (II) with Uracil dithiocarbamate and phosphine's

NMR RESULTS

¹H-NMR spectrum of U-DTC

The ¹H-NMR spectrum of the prepared ligand (Na₂U-DTC) in a dimethyl sulfoxide compensated by deuterium a two-signal at the site (δ H = 5.21 ppm), one proton

correspondence, and a binary signal at the site ($\delta H = 7.41$ ppm), One proton corresponded to as inferred from the complementarity, these two signals were attributed to the CH group. Which returns to the carbon atoms of the solvent as in Figure (3)

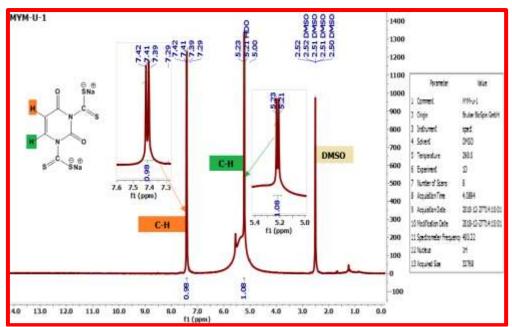


Figure 3: ¹H-NMR spectrum of (Na₂U-DTC)

The H-NMR NMR spectrum of the complex [Hg₂ (U-DTC) ₂ (dppe) ₂] illustrated in Figure 4 showed a multiple signal in the range δ H =(7.37 - 7.77 ppm) and with an integration corresponding to 40 protons, the integrity of these signals indicates that they correspond to protons Eight aromatic rings, found in the dppe ligand, and the spectrum showed a mono signal at the location =H = (7.21) ppm belonging to the protons of the group (2C-H linked to the nitrogen of the ring nitrogen in the ligand (U-DTC) and with an complement that corresponds to two protons in the 2C-H groups The spectrum also showed a signal at

the location $\delta H = (5.42)$ ppm, attributed to (2C-H) protons bound to the L-carbonyl group (U-DTC), and by complementarity corresponding to two protons in the 2C-H groups as A The spectrum showed a mono signal at the chemical displacement $\delta H = (2.37)$ ppm, whose integrity indicates that they correspond to eight protons that were induced to the protons of a group of 4CH₂ in ligand dppe, and a mono signal at the chemical displacement $\delta H = (2.51$ ppm) where the mono signal indicates solvent protons if These values indicate the presence of ligand dppe with ligand U-DTC.

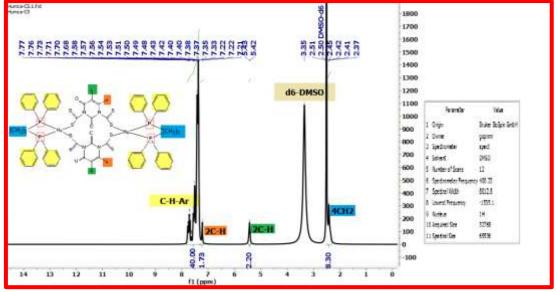


Figure 4: ¹H-NMR spectrum of the complex [Hg₂(U-DTC)₂(dppe)₂]

The ³¹P-NMR data for Some prepared complexes using DMSO-d6 as a Solvent are given in (Table 4), and figures(3) show the spectra for some of them. ^[20,21].

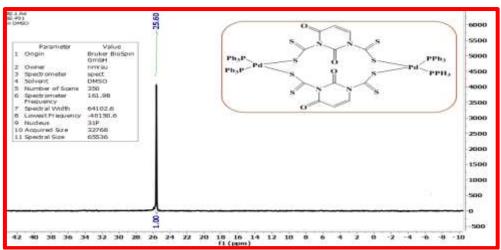


Figure 5: NMR spectrum of 31P-NMR of complex [Hg₂(U-DTC)₂(dppp)₂]

No.	Complex	бр
1.	[Hg ₂ (U-DTC) ₂ (dppp) ₂]	24.08
2.	[Hg ₂ (U-DTC) ₂ (dppe) ₂]	30.19
3.	[pd ₂ (U-DTC) ₂ (pph ₃) ₄]	25.60
4.	[pd ₂ (U-DTC) ₂ (dppm) ₂]	48.52

Table 5: ¹H-NMR spectral data for some complexes

No	Complex							
5. ¹	H-NMR(DMSO-d ⁶): δ 7.30-7.54(40H,Phos) for 8 cycle aromatic , δ 3.01(4H,CH ₂ , ligand dppm),							
δ	.09(6H,2CH ₃ ,ligand phos), 7.77(2H,2CH,ligand phos) dppm							
6.	H-NMR(DMSO-d ⁶): δ 7.31-7.67(60H,Phos) for 12 cycle aromatic , δ 1.37(6H,2CH ₃ ,ligand phos) ,							
	3.01(4H,CH2,ligandU-DTC)ppm., 7.26(2H,2CH,ligand phos) PPh ₃							

Anti-bacterial activity

The synthesized dithiocarbamate ligand and its complexes were tested against two types of bacteria *Staphylococcus aureus* (gram positive) and *Escherichia coli* (gram negative). DMSO was used as solvent and as a control. The concentration of the compound in this solvent were (1 x 10^{-3}), (1 x 10^{-2}) and (1 x 10^{-1}) mg/ml. The disc sensitivity test method was used, the incubation was held for 24 hours at 37 °C. The measured inhibition zones against amounts

of growth of two types of bacteria are summarized in (Table5) that displays the effect of synthesized compounds on bacterial strains.

The results revealed that some of the metal complexes have nearly the same activity or to be more active in comparison with the ligands and that means upon complexation may lead to slight increase of inhibition against bacteria. Antibiotics have been used are: Ampicillin, Amoxicillin.

No.	Complexes	Conc.mg/ml	staphylococcus	Pseudomonas
			aureus	aeruginosa
1.	U-DTC	1 x 10 ⁻³	+	-
		1 x 10 ⁻²	+	+
		1 x 10 ⁻¹	+++	++
2.	[Pd ₂ (U-DTC) ₂ (dppm) ₂]	1 x 10 ⁻³	-	+
		1 x 10 ⁻²	-	+
		1 x 10 ⁻¹	+	+++
3.	[Pd ₂ (U-DTC) ₂ (dppp) ₂]	1 x 10 ⁻³	-	+
		1 x 10 ⁻²	+	++
		1 x 10 ⁻¹	++	+++
4.	Pd ₂ (U-DTC) ₂ (pph ₃) ₄][1 x 10 ⁻³	-	-
		1 x 10 ⁻²	+	+

Table 5: Results of antibacterial study of complexes and prepared ligands

Qader Abdullah Shannak et al / Characteristic Studying and Biological Effect of Synthesized Complexes Pd (II) and Hg (II) with Uracil dithiocarbamate and phosphine's

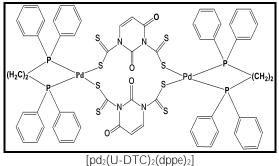
			1		
		1 x 10 ⁻¹	+	++	
5.]Pd ₂ (U-DTC) ₂ (dppe) ₂ [1 x 10 ⁻³	-	-	
		1 x 10 ⁻²	-	+	
		1 x 10 ⁻¹	-	++	
6.	[Hg ₂ (U-DTC) ₂ (dppm) ₂]	1 x 10 ⁻³	-	-	
		1 x 10 ⁻²	-	+	
		1 x 10 ⁻¹	-	+	
7.	[Hg ₂ (U-DTC) ₂ (dppp) ₂]	1 x 10 ⁻³	+	-	
		1 x 10 ⁻²	++	+	
		1 x 10 ⁻¹	+++	++	
8.	Hg ₂ (U-DTC) ₂ (pph ₃) ₄][1 x 10 ⁻³	+	-	
		1 x 10 ⁻²	+	+	
		1 x 10 ⁻¹	++	++	
9.]Hg ₂ (U-DTC) ₂ (dppe) ₂ [1 x 10 ⁻³	+	-	
		1 x 10 ⁻²	++	+	
		1 x 10 ⁻¹	++	++	

(-) = There is no inhibition

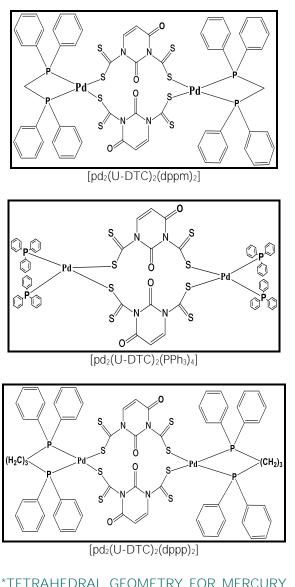
(+) = Inhibition of 5 - 15 mm diameter

(++) = Inhibition of 2 - 15 mm diameter

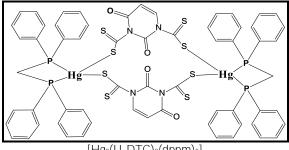
(+++)=Inhibition of 25 to 35 mm diameter

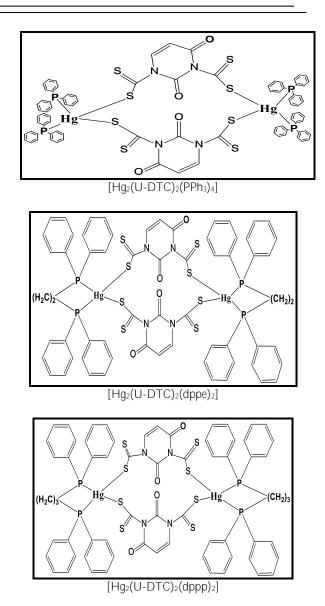

Figure 6: The inhibitory activity of the complex [Hg₂ (U-DTC) ₂ (dppe) ₂] and [Pd₂ (U-DTC)₂ (dppm)₂] against bacteria *Pseudomonas aeruginosa*

CONCLUSIONS


Based on analytical and spectral results, the U-DTC acts as a monodentate ligand which is bonded with the metal ions through a single sulfur atom while phosphine ligands is coordinated with the metal ions in a different modes ,pph₃wascoordinated as amonodentate ligand, dppm coordinate through one phosphine atom behaved and dppe and dppp behaved as a bidentate ligands.

The geometrical structures for synthesized complexes can be proposed as follows


*SQUARE PLANNER STRUCTURE FOR PALLADIUM COMPLEXES


Qader Abdullah Shannak et al / Characteristic Studying and Biological Effect of Synthesized Complexes Pd (II) and Hg (II) with Uracil dithiocarbamate and phosphine's

*TETRAHEDRAL GEOMETRY FOR MERCURY COMPLEXES

[Hg₂(U-DTC)₂(dppm)₂]

REFERENCES

- 1. A.S.Bajpai, Application of thermo gravimetric analysis for characterization of bisdithiocarbamate of Urea and its copper(II)complex.Thermochim.Acta,411,139-148,(2004).
- 2. Amer A. Taqa, Ihsan M., Coordination compounds of bismuth and Tin, React.Inorg.Met-Org.Chem., 2001, Vol.31, No.4, 517-526.
- I.P.Ferreria, G.M.de Lima, E.B.paniago, J.A.Takahashi, K.Krambrock,C.B. pinheiro ,J.L.Wardell,L.C.visentin,., "Synthesis, characterization ,structural and biological aspectsof copper(II) dithiocarbamate complexes-part- II " J.Mol.struct,1048,357-366(2013).
- A.Ariafod., M.D.Asli,,H.Aghboszorg, M,Monajjemi, Theoretical studies of rotational barriers of dithiocarbamate ligands in the square planer complexes TM(L1)(L2)(H2dtc) TM=Ir,Rh.Mol.struct .(Theorem).,636,49-56,(2003).
- 5. G.C.Zhou "Design, Synthesis and evaluation of a Cellular stable and detectable biotinylated fumagillin

probe and investigation of cell permeability of fumagillin and its analog to endothelial and cancer cells "Sci., European.,Med Chem ,70,114-117,(2012).

- Banchiamlak Nigussie Tefera, Young-Dong Kim, and 2019. Ethnobotanical study of Medicinal plants used as Antimalarial and Repellent by Sidama people of Hawassa Zuria district, Southern Ethiopia. Journal of Complementary Medicine Research, 10 (1), 13-26. doi:10.5455/jcmr.20181102063241
- A.Golcu., "Transition metal complexes of propranolol dithiocarbamate synthesis, characterization ,analytical properties and biological activity" Met.chem, 31,405-412(2006).
- A,pandy, A.J.Mathew, M. Kamle, R.K, Mishra, P. Hortl.Kumar "Efficacy of fungicides for control of white mold (Sclerotinia sclerotiorum Lib.) de Barry in lima bean "Sci., 7(1),114-117,(2012).
- Houben-wely"Methoden der organischen chemie" Band XII / 2.G.Thime verlage Stuttgart,811,and reference therein,(1964).
- 10. I.Haiduc and L.Yoong Goh,., "Reaction of bis(thiophosphoryl) disulfanes with metal species: an alternative, convenient route to metal complex and organometallic dithiophosphates and dithiophosphinates.,Coord.chem.Rev ,224,151-170,(2002).
- D.C.Gilheany., C.M.Mitchell, In the chemistry of organ phosphorus compound, F.R., Hartley , Ed., J.Wiley and Sons :NewYork, (1), (1990).
- 12. B.Cornils, A.W. Herrmann., Aqueous phase organometallic catalysis, Wiley-VCH:Weinheim(chapter 3-2)(1998).
- W.Levason., C.A. Mcauliffe ., "Transition Metal Complexes Containing Bidentate Phosphine Ligands "J.Advances in Inorganic Chemistry and Radiochemistry., 14,173-253,(1972).
- 14. M.S.Hussein., "Synthesis and Characterization of Palladium (II)Complexes Containing Mixed Ligand with Pyrrolidine Dithiocarbamate and Phosphines "Journal of Al-Nahrain University, 21(2),.18-27,(2018).
- A.Laith., E.Mohammad., H.Mohammad., G.Helma.,W.Wolfgang., "Synthesis and characterization of platinum and palladium pyrrolidine dithiocarbamate complexes "Transition Met.Chem ,38(4),377-383(2013).
- Krishnappa, S., Rachaiah, J.M., Hegde, S.S., Sadananda, K.S., Ramasanjeevaiah, G., Nanjappa, M.C. Endovascular approach to combined ipsilateral supra-inguinal and infra-inguinal artery stenosis through a single common puncture in a single sitting: Technique and follow-Up (2018) Journal of Cardiovascular Disease Research, 9 (3), pp. 123-126. DOI: 10.5530/jcdr.2018.3.28
- 17. C.Masters., "Homogenous transition metal catalysis ".,Champ and Hal publishers ,London ,350-353,(1981).
- 18. A.Q.Abdulsatter.,M.Y. Mohammed.,"Synthesis and Characterization binuclear complexes with dithiocarbamate ligands derived from barbituric acid

and thiobarbituric acid", International Journal of Enhanced Research in Science, Technology& Engineering,7(4),2319-7463,(2018).

- Khan.H,Badshah. A,Murtaz Get al., "Synthesis, characterization and anticancer studies of mixed ligand dithiocarbamate palladium(II)complexes, "European Journal of medicinal chemistry,"(46),(9),.4071-4077, (2011).
- Pouretedal H.R, F. Momenzadeh, "Synthesis, characterization and study of photocatalytic activity of nanocomposites of oxides and sulfides of Ni(II) and Ni(III)"Bulgarian chemical communications, (11), 59-65, (2015).
- 21. O.Amin,L.AI-Hayaly,S,AI-Jibory and T.AL-Allaf, "Hetrobimetallic complexes of palladium (II) and platinum(II) bridged by the ligand 5-phenyl-1,3,4oxadiazde-2-thione" polyhedron,23,2013-2020(2004).
- S.Al-Jibori, A.AL.Zaubai, M.Mohammed and T,Al.Allaf-"Mixed ligand palladium (II) and platinum(II)complexes of tertiary diphosphines and benz-1,3-imidazoline-2-thione,benz-1,3-oxazoline-2thione or benzo-1,3-thiazoline-2-thione" Trans. Met. Chem, 32:281-286(2007).