Comparative Chemical Study For Species Of The Family Poaceae

Salwah Hamza Hussein Al-hassnwy*1 Ruqaya Manoon HasanAl-nomani²

^{1,2} Department of Biology, Faculty of Education for Girls, University of Kufa, Iraq Corresponding Author: E-mail:<u>salwah.alhassnwy@gmail.com</u>

ABSTRACT

Background: The species P. incurva, S. arabica, C. pakeri, A. donax, A. palaestina, S. barbatus, S. divaricatus and L. hirsutus belongs to the grass family, which is a herbaceous plant that is widespread in Iraqi lands were selected These plants are known as forage plants. The chemical compounds of leaves of these species which belong to different tribes of the Poaceae family were detected 510 compounds were observed, the fewest number of chemical compounds (35) recorded in the leaves of the species P. incurva, while the highest number (90) compounds in the species S. arabica, and the lowest retention time (2.852) minutes recorded with Propane, 2,2-diethoxy-, while the highest detention time (28.272) minutes with the compound Citronellol epoxide (R or S) in the species S. arabica, It was observed that the lowest number of repeated chemical compounds reached two chemical compounds in the P. incurva, as each chemical compound was repeated twice, while the highest number of repeated chemical compounds, (13) compound in the species A. palaestina and by comparing the chemical content, it was noticed the similarity of all studied species by containing the two compounds Propane, 2, 2-diethoxy- and Propan amide, 2-methoxy-N-methyl- while the compound 1.2-Butanediol, appeared in all species except for species A. donax, as well as for the two compounds 2- pentanone, 4-hydroxy-4methyl and Acetoxyiso butyrylchloride, which were found in all species except P. incurva. The species P. incurva, A. donax and S. arabica shared the compound propanic acid, 2-methoxy-2-methyl-, ethyl ester, and on the other hand, A. palaestina, S. divaricatus, S. barbatus, and L. hirsutus shared In the compounds 1,3-Dioxolane, 2-methanol, 2,4-dimethyl, and 2,3-Butanedione, monooxime was found in all the studied species except for the species P. incurva, A. donax, and S. arabica. This study also noticed the existence of peaks, as the diagnose with the lowest number of peaks reached (7) in the type P. incurva, while the highest number of peaks (18) in the type S. arabica. The results showed that the studied species can be separated easily using chemical analysis techniques. Conclusion: The present study proved that the studied species can be classing by means of chemical analysis techniques, especially GC-MS technique, which represents a direct and rapid analytical approach to identify the plant components As it reached the maximum genetic distance between L. hirsutus and S. arabica (1016.2), while the euclidean distance between S. divaricatus and A. palaestina (353.74) was the lowest distance that was calculated .In molecular study, cluster analysis (phylogenetic tree) by unweighted pair-group method of arithmetic means (UPGMA) based dendrogram revealed that they were two main genetic groups: one small cluster A containing 3 varieties and a large cluster B containing 5 varieties.Cluster analysis (phylogenetic tree) by unweighted pair-group method of arithmetic means (UPGMA) based dendrogram revealed that they were two main genetic groups: one small cluster A containing 3 varieties and a large cluster B containing 5 varieties.

proteins, carbohydrates, fibers, and ash which represent the primary metabolites [2].

Gas chromatography-mass spectrometry (GC-MS) is a powerful analytical technique that not only separate but also record a mass spectrum of components of complex mixtures which represent not only primary but also secondary metabolites[11]. It has been used to identify and elucidate the chemical composition of a wide range of grasses such as *Triticum* sp., *Hordeum vulgare, Avena sativa* and *Secale cereal* [6] The aim of this study is to determine the chemical composition of eight species by GC-MS technique.

MATERIALS AND METHODS

1- Dry Powder Preparation

(1) gram of dry plant leaves is grind into fine powder at room temperature.

2- Sample Preparation for GCMS Analysis

Keywords: family Poaceae , Iraq , , tribe , PCA analysis, phylogenetic tree . Gas chromatography–mass spectrometry (GC-MS) .

Correspondence:

Salwah Hamza Hussein Al-hassnwy

Department of Biology, Faculty of Education for Girls, University of Kufa, Iraq

*Corresponding author: Salwah Hamza Hussein Al-hassnwy email-address: salwah.alhassnwy@gmail.com

INTRODUCTION

The Poaceae family is one of the economically important plant families because of its fundamental role as the main source of human and animal food, In general, the plants are composed of a wide array of compounds.Phytochemicals are defined as bioactive nonnutrient compounds in fruits, vegetables, grains, and other plant foods that have been linked to reducing the risk of major chronic diseases[5,7,8,10].

The biosynthetic pathways to construct these compounds differ, and consequently, the chemical constituents within a plant can roughly differentiated, and hence, useful in classification [3,4]. Scant attention has been given to the chemical composition of wild plants that have less nutrition value, and most of the scientific researches emphasized on cultivated or wild edible plants[2] egarding the chemical composition of grasses, it contain The GC-MS analysis is conducted at the laboratories of the Ministry of Science and Technology, the (99.999% purity) is at a constant flow of 1 ml/min temperature of 270°C. Ion source temperature is at 200°C. The oven temperature is programmed from 50°C, with an increase of 8°C/min, to 250°C hold from 5 min.

Γ

(1) gram is extracted with 100 ml of absolute ethanol and acetone (1:1), the solution is shaken for 24 h and then dried in an oven. The whole mixture then filtered through Whatman filter paper. The filtrate obtained is evaporated under room temperature . **3- GC-MS Analysis**

Table (1) chemica	l compounds i	n <i>A. palae</i>	estina (Part 1)		
Structural	Molecular	holding	Area	Molecula	Name of compound	NO
	C7H16O2	2.851	1660485	132	Propane, 2,2-diethoxy-	. 1-
O OH	С6Н12О2	4.134	292083	116	2-Pentanone, 4-hydroxy-4-methyl-	-2
	C10H16	7.035	40353	136	Cyclobutane, 1,2-bis(1- methylethenyl)-, trans-	-3
$\overset{\circ}{+} \overset{\circ}{(}$	C6H12O2	11.548	6632	116	2-Butanone, 3-methoxy-3-methyl-	4-
A A A A A A A A A A A A A A A A A A A	C17H50O7S i7	13.941	29587	562	3-Ethoxy-1,1,1,7,7,7-hexamethyl- 3,5,5- tris(trimethylsiloxy)tetrasiloxane	-5
+ **+	C22H42F3N O4Si4	16.072	29138	553	N-(Trifluoroacetyl)-N,O,O',O''- tetrakis(trimethylsilyl)norepinephr ine	6-
	C10H20O2	17.903	22575	172	1,3-Dioxolane, 2-heptyl-	7-
F F	C6H12F2Si	19.531	16237	150	Trimethyl(3,3-difluoro-2- propenyl)silane	8-

Table (1) chem	nical compoun	ds in <i>A. pala</i>	iestina (Part 2)		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C6H12O2	19.762	12620	116	2,3-Epoxyhexanol	9-
NOH	C3H7NO	21.017	13025	73	Propanal, oxime	-10

And	C18H52O7 Si7	22.357	15255	576	3-Isopropoxy-1,1,1,7,7,7- hexamethyl-3,5,5- tris(trimethylsiloxy)tetrasiloxane	11-
OH	С7Н160	23.589	17608	116	3-Pentanol, 2,4-dimethyl-	12-
	C8H15NO4	24.738	20538	189	2-(3-Methyl-3-nitrobutyl)-1,3- dioxolane	-13
rath	C33H54O4	25.816	24604	514	9,19-Cyclolanostan-24-one, 3- acetoxy-25-methoxy-	14-
он он он он	C6H10O4	26.890	24550	146	D-arabino-Hex-1-enitol, 1,5- anhydro-2-deoxy-	15-
	C14H30O5	28.108	22280	:278	D-Mannotetradecane-1,2,3,4,5- pentaol	-16
$\checkmark$	С9Н20О	29.549	17356	144	Pentane, 2-methoxy-2,4,4- trimethyl-	17-





Table (2) chemical comp	oounds in <i>S.</i>	divaricatu	s (Part 1)			
Structural formula	Molecular formula	holding time	Area	Molecular weight	Name of compound	NO.

Comparative Chemic	al Study F	or Species O	f The Family	Poaceae
--------------------	------------	--------------	--------------	---------

×.	C7H16O2	2.927	2809894	132	Propane, 2,2-diethoxy-	1-
O OH	C6H12O2	4.021	82256	116	2-Pentanone, 4-hydroxy- 4-methyl-	2-
	C9H14	7.068	10883	122	1,7-Octadiene, 3- methylene-	3-
>°<	С6Н12О2	13.964	5972	116	2-Butanone, 3-methoxy-3- methyl-	4-
	C3H4N4O	15.376	1150	112	1-Tetrazol-2-ylethanone	5-

Table (2) chemical comp	oounds in <i>S. d</i>	ivaricatus (	Part 2)			
N_OH	C3H7NO	16.091	5629	73	Propanal, oxime	6-
	C10H20O2	17.919	4652	172	1,3-Dioxolane, 2-heptyl-	7-
$\overset{\sim}{+}$	C6H12O2	19.546	3605	116	2-Butanone, 3-methoxy- 3-methyl-	8-
∩ → OH	C5H10O2	19.814	6275	102	Pentanoic acid	9-
	С6Н10	21.588	4112	82	1-Pentyne, 4-methyl-	10-
	C7H12O	22.369	1621	112	1,2-Pentadiene, 4- methoxy-4-methyl-	11-

Comparative Chemical Study For Species Of The Family Poaceae



Figure (2) an outline of chemical compounds in leaves of *S. divaricatus* 

Table (3) chemical compour	nds in <i>P. incui</i>	rva				
Structural formula	Molecular	holding	Area	Molecular	Name of compound	NO.
× ~	C7H16O2	2.825	20674 6	132	Propane, 2,2-diethoxy-	1-
$\sim$	С9Н16О4	13.366	6811	188	Oxalic acid, isobutyl propyl ester	2-
$\sim$	С6Н10О	18.836	35521	98	2-Ethyl-3-vinyloxirane	3-
	C4H9NO2	19.859	53255	103	Isobutyl nitrite	4-
O U S U O Cl	C3H7ClO2S	20.937	3856	142	Isopropylsulfonyl chloride	5-
	C15H30O	21.719	43947 9	226	Z-10-Pentadecen-1-ol	6-
	C4H9NO2	21.861	6173	103	Nitrous acid, butyl ester	7-



Figure (3) an outline of chemical compounds in leaves of *P. incurva* 

Table (4) chemical co	ompounds in A	. donax (par	: 1)			
Structural formula	Molecular formula	holding time	Area	Molecular weight	Name of compound	NO
X°	С7Н1602	2.895	1099488	132	Propane, 2,2- diethoxy-	1-
O OH	С6Н12О2	3.973	52762	116	2-Pentanone, 4- hydroxy-4-methyl-	2-
○ NH O	C4H7NO2	11.575	1670	101	Acetamidoacetaldehyde	3-
~~~~	С9Н16О4	13.372	31690	188	Oxalic acid, butyl propyl ester	4-
	C3H7NO2	18.837	16445	89	Propane, 1-nitro-	5-

Figure (4) an outline of chemical compounds in leaves of *A. donax*

Table (4) chemical cor	npounds in A	4. donax (part	: 2)			
~~~~,"	С9Н18О2	19.864	81605	158	Nonanoic acid	6-
	C3H7NO2	20.940	8658	89	Propane, 2-nitro-	7-
~~~~~	С15Н30О	21.733	594407	226	Z-10-Pentadecen-1-ol	8-
ОН	C4H8O2	21.870	15956	88	Butanoic acid	9-
~~i~	C8H10O4	24.721	6807	170	Oxalic acid, diallyl ester	10-
	C6H9NO4	26.314	7730	159	N,N,O- Triacetylhydroxylamine	-11

Table (5) chemical	compounds	in S. Arabic	a (Part 1)			
Structural formula	Molecular	holding	Area	Molecular	Name of compound	NO.
	formula	time		weight		
L.	C7H16O2	2.852	11318 18	132	Propane, 2,2-diethoxy-	1-
\sim						

|--|

о он	С6Н12О2	3.915	23563	116	2-Pentanone, 4-hydroxy-4- methyl-	2-
° NH ℃	C4H7NO2	13.967	1670	101	Acetamidoacetaldehyde	3-
	C5H9NO2 S	15.326	4468	147	Propanesulfonylacetonitrile	4-
S S S	C5H11NS 2	15.406	1837	149	Carbamodithioic acid, dimethyl-, ethyl ester	5-
° NH O	C4H7NO2	16.096	2612	101	Acetamidoacetaldehyde	6-
ogi	C13H22O 4	18.825	14808	242	Oxalic acid, cyclobutyl heptyl ester	7-
Y	C16H32O 2	19.876	81558	256	n-Hexadecanoic acid	8-

Table (5) chemical	compounds i	n S. Arabica	(Part 2)			
OH I	С7Н120	20.942	37555	112	1-Heptyn-4-ol	9-
~~~~~~	C15H30O	21.705	300099	226	Z-10-Pentadecen-1-ol	10-
	C5H10O2	21.860	15829	102	Pentanoic acid	11-
NH2	C4H5N3	22.776	19747	95	2-Aminosuccinonitrile	12-
~N	C5H9N	22.913	8336	83	Butane, 1-isocyano-	13-
$\overset{\circ}{+} \overset{\circ}{\leftarrow}$	С6Н12О2	23.608	5201	116	2-Butanone, 3-methoxy-3- methyl-	14-
	С9Н20	27.096	28877	128	Heptane, 3,4-dimethyl-	15-

Comparative Chemical Study For Species Of The Family Poaceae

	C26H42O4	27.453	227789	418	Phthalic acid, bis(7- methyloctyl) ester	16-
aź	C34H58O4	27.879	154885	530	1,2-Benzenedicarboxylic acid, ditridecyl ester	17-
S OH	C10H20O2	28.272	501458	172	Citronellol epoxide (R or S)	18-



Figure (5) an outline of chemical compounds in leaves of S. arabica

Table (6) chemical c	compounds in S	S. barbatus (P	art 1)			
Structural formula	Molecular formula	holding time	Area	Molecular weight	Name of compound	NO
X	C7H16O2	2.925	3023393	132	Propane, 2,2-diethoxy-	1-
о он 	C6H12O2	4.059	330049	116	2-Pentanone, 4-hydroxy-4- methyl-	2-
	C10H16	7.042	29047	136	Cyclobutane, 1,3- diisopropenyl-, trans	3-
$\stackrel{\text{int}}{=}$	C6H12O2	11.549	5514	116	2-Butanone, 3-methoxy-3- methyl-	4-
	C17H50O7S i7	13.949	32586	562	3-Ethoxy-1,1,1,7,7,7- hexamethyl-3,5,5- tris(trimethylsiloxy)tetrasilox ane	5-

Table (6) chemical c	compounds in .	S. barbatus (P	art 2)			
	C22H42F3 NO4Si4	16.077	27474	553	N-(Trifluoroacetyl)- N,O,O',O''- tetrakis(trimethylsilyl)norep inephrine	6-
° 	СЗН6О2	17.906	25161	74	1,3-Dioxolane	7-
- L	C11H20O2	18.279	28822	184	6-Nonen-1-ol, acetate, (Z)-	-8
YY	C16H32O2	19.786	27769	256	n-Hexadecanoic acid	9-
∧NOH	C3H7NO	21.019	10191	73	Propanal, oxime	10-
omm	C18H36O2	23.589	12625	284	1,3-Dioxolane, 2-pentadecyl-	11-
OH OH HO HO	С6Н10О4	24.741	12226	146	D-arabino-Hex-1-enitol, 1,5- anhydro-2-deoxy-	12-
	С29Н50О	25.687	252814	414	betaSitosterol	13-



# Figure (6) an outline of chemical compounds in leaves of *S. barbatus*

Table (7) chemical compounds in C. pakeri (Part 1)									
Structural formula	Molecular	holding	Area	Molecula	Name of compound	NO.			
	formula	time		r weight					

Comparative (	Chemical	Study	For S	pecies O	fThe	Family	Poaceae
---------------	----------	-------	-------	----------	------	--------	---------

X	C7H16O2	2.834	1177622	132	Propane, 2,2-diethoxy	1-
о он	C6H12O2	3.895	44578	116	2-Pentanone, 4-hydroxy- 4-methyl	2-
NH	C3H4N2	7.035	3869	68	1H-Imidazole	3-
	C10H180	10.459	170822	154	2,6-Octadien-1-ol, 3,7- dimethyl-, (E)-	4-
° NH O	C4H7NO2	13.967	3104	101	Acetamidoacetaldehyde	5-
	C4H7N	19.240	3460	69	Utanenitrile	6-

Table (7) chemical c	Table (7) chemical compounds in C. pakeri (Part 2)										
~~i~~	C8H10O4	21.637	6752	170	Oxalic acid, diallyl ester	7-					
	C3H7NO2	24.668	1787	89	Propane, 2-nitro	-8					
	C8H16OS	24.956	9714	160	tert-Butyl cyclopropylmethyl sulfoxide	9-					
	С9Н20О	26.818	7823	144	Pentane, 2-methoxy-2,4,4- trimethyl-	10-					
=+°	C8H14O	28.136	6022	126	1-Butyne, 3-methyl-3-(1- methylethoxy)-	11-					
HO	C10H22O	29.431	7287	158	3-Octanol, 3,7-dimethyl-,	12-					



# Figure (7) an outline of chemical compounds in leaves of *C. pakeri*

Table (8) chemical c	ompounds in <i>L.</i>	hirsutus (P	art 1)	_		_
Structural formula	Molecular	holding	Area	Molecula	Name of compound	NO.
	formula	time		r weight		
X	C7H16O2	2.911	3645289	132	Propane, 2,2-diethoxy-	1-
O OH	C6H12O2	4.006	116863	116	2-Pentanone, 4-hydroxy-4- methyl-	2-
	C10H16	7.044	18003	136	Cyclobutane, 1,3-diisopropenyl-, trans	3-
NH O	C4H7NO2	11.549	2327	101	Acetamidoacetaldehyde	4-
	C3H7NO2	12.672	764	89	Propane, 2-nitro-	5-
Jucation of the second	C16H48O10S i9	13.945	5589	652	2-(2',4',4',6',6',8',8'- Heptamethyltetrasiloxan-2'- yloxy)-2,4,4,6,6,8,8,10,10- nonamethylcyclopentasiloxane	6-

Table (8) chemical compounds in L. hirsutus (Part 2)								
0	C3H7ClO2S	15.285	318	142	Isopropylsulfonyl chloride	7-		

Comparative Chemical Study For Species Of The Family Poaceae

	C3H7NO2	15.347	528	89	Propane, 2-nitro-	-8
	C10H20O2	16.077	5038	172	1,3-Dioxolane, 2-heptyl-	9-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C17H32O2	18.270	22427	268	Dodecanoic acid, 2-penten- 1-yl ester	10-
	C6H11N	18.752	3668	97	Pentanenitrile, 4-methyl-	11-
Y ~~~ N=0	C5H11NO2	19.772	5776	117	Isoamyl nitrite	12-

Figure (8) an outline of chemical compounds in leaves of *L. hirsutus*

Tables (9) chemical compounds with highest and lowest retention time										
the highest retention time	the name of the compound	the shortest retention time	the name of the compound	The species						
29.549	Pentanem2-methoxy-2,4,4-trimethyl	2.851	Propane, 2,2-diethoxy-	A. palaestina						
22.369	1,2-pentadiene,4-methoxy-4-methyl	2.927	Propane, 2,2-diethoxy-	S. divaricatus						
21.861	Nitrous acid butyl ester	2.825	Propane, 2,2-diethoxy-	P. incurva						
26.314	N,N,O-Triacetylhydroxylamin	2.895	Propane, 2,2-diethoxy-	A. donax						
28.272	Citronellol epoxide (R or S)	2.852	Propane, 2,2-diethoxy-	S. arabica						
26.889	D-Mannoteradecane- 1,2,3,4,5pentaol	2.925	Propane, 2,2-diethoxy-	S. barbatus						
29.431	3- Octanol1,3,7-dimethyl-,	2.834	Propane, 2,2-diethoxy-	C. pakeri						
19.772	Isoamyl nitrite	2.911	Propane, 2,2-diethoxy-	L. hirsutus						

hirsutes

The emergence of repetition of some chemical compounds was recorded in all studied species and through the extraction and calculation of the number of chemical compounds that occur repeatedly in all types of the studied species, it was observed that the lowest number of repeated chemical compounds reached two chemical compounds in the *P. incurva*, while the highest number of repeated chemical compounds, (13) compound appeared in the *A. palaestina*. The lowest

RESULTS AND DISCUSSION

The results of our study showed the presence of prominent changes in the distribution of chemical compounds between the species under study, (510) chemical compounds clustered in the studied species were detected, as (35) compounds were identified in the *P. incurva* and (90) compounds in the *S. arabica*, (60) compounds in *C. pakeri*, (55) compounds in *A. donax*, (85) compound in *A. palaestina*, (70) compound in *S. barbatus*, (55) compound in *S. divaricatus* and (60) compounds in *L.*

divaricatus, S. barbatus, and L. hirsutus species shared the compound 1.3-Dioxolane, 2-methanol, 2,4-dimethyl, The compound 2,3-Butanedione, monooxime was found in all species except for P. incurva, A. donax, and S. arabica. By comparing the number of peaks in each chemical diagram, it was observed that A. pakeri and L. hirsutus, having (12) peaks, while the lowest number (7) was in P.incurva, and the highest peaks in S.arabica, with (18) peaks

Some of the identified compounds possess antimicrobial and biological activities such ashexadecanoic acid which has anti-inflammatory activity [9] octadecanoic acid had the property of anti-inflammatory and antiarthritic; tetracosane showed cytotoxicity against AGS, MDA-MB-231, HT29, and NIH3T3 cells (28); and triacontane possesses antibacterial, antidiabetic, and antitumor activities [1] The identification of these compounds serves as the basis in determining the possible health benefits of the wild plants, leading to further biological and pharmacological studies.

The results of the study presented in Table (10) show the euclidean distance between the studied species. As it reached the maximum genetic distance between L. hirsutus and S. arabica (1016.2), while the Euclidean distance between *S. divaricatus* and *A. palaestina* (353.74) was the lowest distance that was calculated .

Figure (9) shows division species into two main groups or two major clades. The first clad included S. A.donax and C.pakeri species, while L. hirsutus was characterized by the subgroup alone. The secondary subgroup was divided into 3 subgroups,(3subclades). Incline species S.barbatus apart sub-sub by himself and brothered him with the second subclade 2 subclade that combines the two species S. divaricatus and A. palaestina, while the P. incurva species is unique to the secondary subclade alone. The isolation of the species in groups or clusters from each other indicates the reliability of the chemical characteristics in separating the species. As for the similarity that some species came with, this results from the fact that they have a common ancestral origin.

retention time (2.852) minutes was recorded with the compound Propane, 2,2-diethoxy- while the highest retention time was (28.272) minutes with Citronellol epoxide (R or S) in species S. arabica, while species A. *palaestina* had a minimum retention time (2,851) minutes for Propane, 2,2-diethoxy-, and a highest (29,549) minutes for a compound Pentane, 2-methoxy-2,4,4trimethyl-. While the species *S. barbatus*, had aminimum retention time of (2,925) minutes at the compound Propane, 2,2-diethoxy- and the highest retention time (26,889) minutes at the compound. pentaol D-Mannotetradecane-, and the two types A. donax and S. divaricatus were similar in that they contain (55) chemical compounds, in A. donax with a minimum retention time (2.895) minutes for diethoxy. - Propane, 2,2- and the highest retention time (26,314) minutes at compound N, N, O-Triacetylhydroxylamine, while the species *S. divaricatus* recorded the lowest retention time (2,227) minutes at the compound Propane, 2,2-diethoxyand the highest retention time (22.369) minutes with the compound 1,2-Pentadiene, 4-methoxy-4-methyl-, and the species C. pakeri and L. hirsutus were similar in that they contained (60) chemical compounds. The first one had its lowest retention time of (2.834) minutes at the compound Propane, 2,2-diethoxy, and the highest retention time (29.431) minutes for the compound 3-Octanol, 3,7-dimethyl-, while L. hirsutus recorded the lowest retention time (2,911) minutes at the compound Propane, 2, 2-diethoxy - while its highest retention time reached (19.772) minutes with Isoamyl nitrite as indicated in Table (9). Bv comparing the chemical content, it was observed that all the studied species were similar in that they contained the two compounds Propane, 2,2-diethoxy- and Propan amide, 2-methoxy-N-methyl-. while the compound 1,2-Butanediol, appeared in all species except for speciese A. donax, as well as for 2-pentanone, 4-hydroxy-4-methyl and Acetoxyiso butyrylchloride, which were found in all species except for *P. incurva*, *A. donax* and *S. arabica* while co-present with the compound propanic acid, 2-methoxy-2-methyl-, ethyl ester. On the other hand, A. palaestina, S.

L.hirsu tus	C.pakeri	S.barbatus	S.arabica	A.donax	P.incurva	S.diverica tus	A.palaestin a	0
							0	A.palaestin a
						0	353.74	S.divericat us
					0	492.24	534.08	P.incurva
				0	558.36	446.94	627.51	A.donax
			0	856.49	999.06	977.9	958.5	S.arabica
		0	962.34	671.57	771.52	605.97	620.9	S.barbatus
	0	891.81	919.81	537.7	894.01	836.98	982.88	C.pakeri
0	652.13	831.97	1016.2	579.57	934.47	685.44	864.34	L.hirsutus

11 (40) 51

Figure (9) a tree diagram that shows the similarity between the species studied using the UPGMA analysis method. The numbers of clusters represent

Figure (10) The distribution of species on the orthogonal level according to PCA analysis.

- 4. Magee P.J., Rowland I.,R. (2004). Phyto-oestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer. Brit. J. Nutr. 91:513-531.
- 5. Kan A. (2015) Characterization of the fatty acid and mineral compositions of selected ereal cultivars from Turkey. Rec Nat Prod;9:124-34.
- Hameed I.H., Hussein H.J., Kareem M.A.; Hamad N,S. (2015). Identification of five newly described bioactive chemical compounds in methanolic extract of *Mentha viridis* by using gas chromatography-mass spectrometry (GC-MS). J. Pharmacogn. Phytother. 7(7):107-125.
- Hai L.,R. (2004). Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action. J. Nutr. 134:3479-3485.
- Aparna V.,; Dileep K.V.,; Mandal P.K.,; Karthe P.,; Sadasivan C.,; Haridas M. (2012) Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem Biol Drug Des ;80:434-9.

CONCLUSIONS

The present study has proven its assisting in the classification of species studied using chemotaxonomic techniques, especially the GC-MS technique, which represents a direct and fast analytical approach for the identification of phytoconstituents.

REFERENCES

- 1. Vagin A.; Teplyakov A. (2000) An approach to multicopy search in molecular replacement. ActaCrystallogr D Biol Crystallogr ;56:1622-4.
- Tuncturk M.; Eryigit T., Sekeroglu N., Özgökçe F.(2015) Chemical composition of some edible wild plants grown in Eastern Anatolia. Am J Essent Oils Nat Prod;2:31-4.
- Singh R. (2016) Chemotaxonomy: A tool for plant classification. J Med Plants Stud;4:90-3 Poorter H., Bergkotte M. (1992) Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ;15:221-9.

 Skoog D.A.,; Holler F.J.,; Crouch S.R.(2007) Principles of Instrumental Analysis. 6th ed. Florence, KY, USA: Thomson Brooks/Cole;. p. 1056.

.

9. Altameme H.J.,; Hameed I.H,; Kareem M.A. (2015). Analysis of alkaloid phytochemical compounds in the ethanolic extract of Datura stramonium and evaluation of antimicrobial activity. Afr. J. Biotechnol.14(19):1668-1674.