Estimate Toxic Effect Of Silica Nanoparticles On Kidney, Liver And Lung Function Of Male Albino Rats

Leena Adeeb Mehti 1, Alaa Mohammad Hasson Al-Husseini2

1University of Kufa, Faculty of Agriculture, Department Animal Production, Iraq
2University of Al-Qadisiyah, College of Science, Department Of Biology, Iraq

ABSTRACT
The current study was carried out in the animal house of faculty of science/Kufa university on thirty male albino rats to determine the toxic effect of nano silica on some organs, kidney, lungs and liver in the male adult rats that treated with two concentrations (100,150)mg/kg of silica nanoparticles for 30 days. the kidney and liver functions were determined by biochemical markers (AST, ALT, Urea and Creatinine), and histopathological analysis was performed to all studied organs. the results showed a significant elevation in ALT, AST Urea and Creatinine levels in serum of male rats. the histopathological results showed severe damage in the tissue of kidney, liver and lungs especially at high concentration 150mg/kg. It caused necrosis, dilation in renal tubules and inflammation of hepatocytes, also, there was metaplasia in mucous and hypertrophy in lung tissue, these findings as a response to administration orally of silica nanoparticles.

INTRODUCTION
Silica nanoparticles are used in various fields as additives to food, cosmetics and drugs. Furthermore, widely used of silica nanoparticles in medicine and pharmacy caused increased human exposure to nanoparticles at different types and sizes [1]. Although, silica nanoparticles are made of non-toxic materials, their potential interactions with several biological materials in several ways is accumulable some materials become toxic when they are present in nanometer size. many studies revealed that silica nanoparticles induced reactive oxygen species in all cells of pulmonary system, lung epithelial cells and pleural mesothelium [2]. In addition, most studies demonstrated that dermal exposer for 3 days to silica nanoparticles caused penetration the skin and localization silica nanoparticles at lymph nodes, then dermal exposer of silica nanoparticles for 30 days resulted in absorption into the brain and liver [3]. Currently, more exposer to nanomaterial caused toxicity for many organs in the human body, silica nanoparticles exposer result from oxidative injury, inflammatory reaction following cell membrane disruption, genotoxic impact, necrosis and dead of cells [4]. The toxic effect of silica nanoparticles resulted from its small size that leads to exponential raise the surface area, also, its shape has a crucial role in the toxicity of nanoparticles especially when interacting with the biological system [5]. Inhalation of nano silica causes respiratory harmful raises the heart disease and increase the levels of fibrinogen and the concentration of red blood cells [6]. Treated with nano silica also results in production of hydroxyl radical [7] and caused harmful to liver [8]. There are many methods of toxicity has been presented contain DNA harmful and accumulation of protein in cell [9], metabolomics [10] oxidative pressure and apoptosis. In addition to its effect on the expression of some fertility genes, which reflects negatively on the efficiency of the reproductive system [11], as tissue changes in the testes and epididymis of rats treated with silica were observed[12].

The studied about the toxic impact of nano silica on some organs of male rats like lung, kidney and liver is little, thus, the present study was carried out in demonstrated the toxicity of exposer to silica nanoparticles solution after oral administration of male rats.

MATERIALS AND METHODS
Preparation of silica nanoparticles
For synthesize SiO2, the precursor (Na2SiO3) was diluted with distilled water (with ratio 1:2) for 4 hours and then 1 M of hydrochloric acid was added and shaken at room temperature (RT) till pH changed from pH 12 to pH 7. The white powder was obtained by filtration then washed with distilled water to neutralize the acid and dried at a temperature of 60°C for about 12 h [13].

Laboratory animals
Thirty male rats were housed to a 12 light /dark cycle at the animal house of the college of science/ University of Kufa and environmental condition was maintained at a constant temperature of (22-25)°C, water and autodaved food were provided ad libitum. the rat weight between (250-300) gm.

Experimental Design
The present study included an effect of oral administration silica nanoparticles at two different concentrations for 30 days on hepatorenal functional efficiency and lungs. Thirty male rats were randomly divided into three identical groups; (figure -1), each group involved (10) animals as follow: Male rats were divided into three groups:

First experimental group (E1): involved (10) male rats received orally (100)mg/kg silica nanoparticles solution by gavage technique throughout the trial period.
Estimate Toxic Effect Of Silica Nanoparticles On Kidney, Liver And Lung Function Of Male Albino Rats

Second experimental group (E2): involved (10) male rats received orally (150)mg/kg silica nanoparticles solution by gavage technique throughout the trial period. At the end of the experiment, the blood samples collected to estimation levels of the ALT, AST, creatinine and urea. Kidney, liver and lung were removed from all animals and control group (C): involved (10) male rats received normal saline orally by gavage technique throughout the trial period. They fixed in 10% formalin for histopathological examination

Serological study
The concentrations of liver enzymes ALT and AST in serum were estimated by using the ELISA technique. Rat ALP ELISA Kit (ab234579) with 15.2 ng/ml sensitivity and Rat AST ELISA Kit (Aspartate Aminotransferase) (ab263883) with 42.4 pg/ml sensitivity. They were Made by Abcam company. According technical instructions that described in Kit’s producer were followed. To detection of the levels, urea and creatinine in serum used colorimetric method. The reagents manufactured by Randox were used [14].

Histopathology study
The tissue preparation steps were undertaken for histopathological examination depending on the method of Steven and Bancroft [15].

Statistical analysis:
The quantitative data were expressed as mean ± standard error (SE) for measurements. Statistical analyses were performed by using one-way analysis of variance depending on the Graphpad Prism 7 program. Statistical significance was defined as a P-value of P<0.05, P<0.001 and P<0.0001.

RESULTS:
Data present in histograms (figure 2) shows the levels of ALT Alanine transaminase, AST Aspartate transaminase, creatinine and urea in the rats that treated with silica nanoparticles in E1 and E2 at concentrations (100 and 150) mg/kg respectively, as compared with control. The differences in the levels of ALT and AST consider one of the biomarkers that indicated the functional performance of the liver in this study, serum ALT and AST levels (figure 2 in A and B) recorded a significant increase (p<0.0001) in E2 in comparison with the control group and E1 group (p<0.001), while there were no significant differences (p>0.05) between the control group and E1 group. On the other hand that treated with nano silica solution at 150 mg/kg in E2 group caused a significant increase of creatinine levels in the serum compared with the control group (p<0.001) and E1 group (p<0.05) as shown in (figure 2C). While the treated with silica nanoparticles at concentration 100 mg/kg no effects on the creatinine levels in comparison with the control group (p>0.05). Results of effects of nano silica on the urea levels in serum revealed there were high significant different at two concentrations (100 and 150) mg/kg in E1 at level p-value <0.001 and E2 at level p-value <0.0001 in comparison with control groups (figure 2D).

Histological results show no obvious changes in kidney tissue of control group (figure 3A), while in E1 group that treated with 100 mg/kg of silica nanoparticles (figure 3B) there was an infiltration of lymphocyte cells, dilution in renal tubules also, vacuolation and necrosis in some renal tubules lining epithelium and congestions the others. In addition to infiltration of inflammatory mononuclear cell.
Estimate Toxic Effect Of Silica Nanoparticles On Kidney, Liver And Lung Function Of Male Albino Rats

cells in the interstitial tissue. Treated with 150 mg/kg of silica nanoparticles is showing dilation and vascular congestion in the interstitial tissue and infiltration of inflammatory mononuclear cells has been observed with dilation in some renal tubules (figure 3C). The liver tissues of control group presented the normal histological structure of hepatocytes that surround central vein (figure 4A), group E1 that treated with 100mg/kg of silica nanoparticles (figure 4B) showed mild vacuolar degeneration in hepatocytes and congestion of central vein with a proliferation of kupffer cells. In the group treated with 150 mg/kg silica nanoparticles is showing congestion in hepatic sinusoids with degeneration and necrosis of hepatocytes (figure 4C). Histological section of the lung (figure 5) showed normal histological lung structure of rats in the control group (A). In E1 group that treated with 100mg/kg of silica nanoparticles investigated wall thickening, subepithelial fibrosis, mucous metaplasia, deposition of extracellular matrix in the subepithelial layer, myofibroblast hyperplasia, bronchial smooth muscle hyperplasia and hypertrophy (figure 5B). While in E2 group treated with 150mg/kg of silica nanoparticles, there was severe inflammation and inflammatory cells (figure 5C).

Figure (2): effects of nanosilica on the liver and kidney functions of the male rat. (A) ALT in serum (B) AST in serum (C) creatinine in serum (D) urea in serum. Each group (n=10). Groups: (C) represent control, (E1) represent first experimental group and (E2) second experimental group. Values represent means ± standard error. p-values at levels (<0.05*, P<0.001*** and P<0.0001****)

Figure (3): effect of nanosilica on the kidney tissue of the male rats. (A) indicate to control group, (B) indicate to (E1) first experimental group and (C) indicate to (E2) second experimental group, it showed infiltration of lymphocyte cells (blue arrow), dilation in renal tubules (black arrow), necrosis in some renal cells and congestions the others (green arrow). H&E stain 100X.
Estimate Toxic Effect Of Silica Nanoparticles On Kidney, Liver And Lung Function Of Male Albino Rats

Figure (5) effect of nanosilica on lung tissue of male rats: (A) indicate to control group, (B) indicate to (E1) first experimental group and (C) indicate to (E2) second experimental group, it showed necrosis and degeneration of epithelial lung tissue (black arrow). H&E stain 100X.

DISCUSSION

Many studies on the laboratory animal have proved that silica nanoparticles resulting in multiple organs damages which lead to disorders such as fibrosis of lung and pleural effusion. Other studies show that inhaled to silica nanoparticles not only caused damage of lungs but also, liver, kidney and heart [16]. Most essential organs for detoxification is kidney, liver and lungs, in present study we confirmed that silica nanoparticles can induce kidney and liver injury epically at high concentrations 150 mg/kg as compared with control, while there was an increment in creatinine and urea levels because of the toxic effect of silica nanoparticles which caused oxidative stress [17]. Oxidative stress is the result of an imbalance in cellular biosystem between the production of free radicals and cellular defense mechanisms. Increases in free radicals or decreases in antioxidant substances can impair the balance between oxidizing agents and antioxidants. Oxidative stress can cause a variety of biochemical reactions that are potentially harmful [18]. Nanoparticles have been shown to generate reactive oxygen species (ROS) by pro-oxidant functional groups, active redox cycling and particle cell interactions [19]. Reactive oxygen species constitute a pool of oxidative species including superoxide anion, hydroxyl radical, hydrogen peroxide, singlet oxygen. The antioxidant defense mechanism is very important in response to reactive oxygen species toxicity. SOD superoxide dismutase is the first line of the defense mechanism and scavenges superoxide radicals. They are responsible for the conversion of H2O2 into H2O and molecular O2. The decomposition product of the polyunsaturated fatty acids is produced naturally as a result of lipid peroxidation and is often used as an indicator of oxidative damage at the cellular level [20].

Earlier studies have shown that the toxicological induction of NPS Effects of various organs, particularly on the Kidneys, liver, spleen and lungs [21]. In the present study, the activity of the liver enzymes (AST and ALT) were significantly elevated in male rats treated at 150 mg/kg nano silica. This finding shows hepatic damage which changes the hepatic Permeability of the membrane. That triggers enzyme leakage from those cells. In accordance with this finding, some investigators have reported an increase of AST and ALT activities in serum following silica nanoparticles administration [22]. Some studies have indicated that the liver is known as a major nano silica because it is a reticuloendothelial system organ [23]; also, our data shows elevations in the levels of Creatinine and urea in serum in rats that administrated with silica nanoparticles. This indicate to reductions in the rate of glomerular filtration [24].

In the current study, the alteration in the liver section of male rat that administrated with silica nanoparticles in concentration 100mg/kg showed mild degenerative changes in some hepatocytes and slight congestion of blood vessels, on another hand, the liver tissue of E2 at level 150 mg/kg of nanosilica showed severe histological changes, there was focal necrosis and severe vacuolar degradation in the hepatocytes. Also, Kupffer cells have demonstrated mild proliferation and slight congestion in the Hepatic sinusoids. These findings associated with those of indicators of liver's function represented by enzymes AST and ALT concentrations were increment in the rats that treated with silica.
nanoparticles, in addition to, infiltration of inflammatory cell and hepatocytes adipose degeneration of the liver’s tissues [25]. Some hepatocytes may have hepatic vacuolation, karyolysis, and pyknotic nuclei due to cell injury [26]. Kidneys rats of the group treated with 100 mg/kg of silica nanoparticles indicated slight degenerative the in E2 group which treated with 150 mg/kg of silica nanoparticles glomerular tuft uncovered blockage and decay, notwithstanding vacuoles of glomerular coating endothelium. Some renal corpuscles uncovered corruption of kidney tuft. Intersitial tissue indicated the invasion of mononuclear fiery cells. There was coagulate rot of an impressive number of renal cylindrical covering epithelium. these results greed with [27] that noticed the damage in kidney tissue of male rats, there were cell swelling and necrosis treated with silica nanoparticles[28].

The histological changes of lung evidence various degree of inflammation caused by toxicity of silica nanoparticles compared with the control group, there were Wall thickening, sub epithelial fibrosis, mucous metaplasia, deposition of extracellular matrix in the sub epithelial layer, myo fi broblast hyperplasia, bronchial smooth muscle hyperplasia and hypertrophy [27]. However, high concentration of silica nanoparticles 150mg/kg caused severe changes in lung tissue of male rats, cell necrosis and aggregation large number of nanoparticles in the airway caused obstruct [29]. Nanoparticles are similar in size to biological molecules such as proteins, DNA and viruses so they are likely to Penetrate through the skin barrier pulmonary and blood barrier and penetrate the body through simple diffusion and penetration. These silica nanoparticles are Prone to penetration through membranous pores and enter into the cells or cytoplasmic organelles such as mitochondria, lysosomes, endoplasmic reticulum, lysosomes and the nuclei to in combination with biological macromolecules or catalytic reactions that occur simultaneously [30] The normal biological macromolecules and three-dimensional structure of the biological membrane are thus changed, causing the loss of some major activity of hormones and enzymes [31].

REFERENCES

20. I. M. Joni, L. Nulhakim, M. Vanitha and C. Panatarani, “Characteristics of crystalline silica (SiO2) particles


