Evaluation of Thyroid Volume and Thyroid Function in Newly Diagnosed Type 2 Diabetes Mellitus Patients

Abdulhazima Raajof Mood1, Ban Waqueed Hussein Bdar2, Satar Jabbar Rahi Al-Grattee2*

1Internal Medicine Department, College of Medicine, University of Kerbala, Kerbala, Iraq.
2Department of Medical Microbiology and Immunology, College of Medicine, University of Kerbala, Kerbala, Iraq.

Corresponding author: Satar Jabbar Rahi Al-Grattee
Department of Medical Microbiology, College of Medicine, University of Kerbala, Kerbala, Iraq.
E-mail: sattar.rah72@gmail.com

ABSTRACT
The pathophysiological relationship between thyroid dysfunction and diabetes mellitus (DM) is centered around the interplay between thyroid hormones and carbohydrate metabolism. The significance of thyroid dysfunction in type 2 DM is not fully recognised. This study investigated the effects of thyroid volume and thyroid function in newly diagnosed diabetic patients with the aim of recommending the significance of thyroid status assessment in the management of type 2 DM. One hundred patients newly diagnosed with type 2 DM and 100 non-diabetic volunteers were recruited for the study. Thyroid ultrasonography was used to measure thyroid volume and monitor presence of nodules. Thyroid function test was carried by analysing serum levels of free triiodothyronine (FT3), thyroxine (FT4) and thyroid-stimulating hormone (TSH) while severity of diabetic status was evaluated by measuring random blood sugar (RBS) and glycated hemoglobin (HbA1c). The prevalence of thyroid nodules, mean thyroid volume, RBS and HbA1c was significantly higher in the DM group compared to the non-DM group. With the exception of FT4, there was no significant difference between the two groups in thyroid hormones. Pearson’s correlation revealed strong uphill correlation between thyroid volume and RBS as well as HbA1c while the presence of thyroid nodules showed moderate downhill correlation with thyroid volume, RBS and HbA1c. Type 2 DM is associated with thyroid dysfunction that worsens with severity of diabetic condition, hence it is recommended that baseline and follow-up thyroid status be checked in newly diagnosed type 2 DM patients.

Keywords: Thyroid dysfunction, Diabetes Mellitus, Hyperthyroidism, Hypothyroidism, Insulin resistance, Hypoglycemia

Correspondence: Satar Jabbar Rahi Al – Grattee
Department of Medical Microbiology, College of Medicine, University of Kerbala, Kerbala, Iraq.
E-mail: sattar.rah72@gmail.com

DOI: 10.1186/s40297-020-00252-z

INTRODUCTION
Thyroid disease is an endocrine disorder commonly encountered in clinical practice, even though its prevalence varies among different populations. Previous studies have conducted an estimation of thyroid disease prevalence within different study populations at different times. For instance, the Wickham survey of 1977 published a prevalence of 6.6% among the adult population in the north of England (1), while 18.9% of a German population was reported to have thyroid dysfunction by a study conducted in 2016 (2). Globally, available data indicate that over 1.6 billion individuals may be at risk and would require some form of iodine supplementation (3).

Epidemiological data on thyroid dysfunction vary considerably due to differences in study design, conditions and target population. A recent cross-sectional study nested within the Birmingham Elderly Thyroid Study (BETS) reported 6% prevalence of subclinical thyroid dysfunction among the study population (4), whereas 17.2% prevalence of subclinical hypothyroidism and 1.2% subclinical hyperthyroidism was recorded in female patients with acute myocardial infarction (5). However, an overview of available data indicate that prevalence of subclinical hypothyroidism ranges between 4.25%, while overt hypothyroidism prevails in about 2–5% and are both higher in females above 60 years of age. Lower prevalence has been recorded for overt and subclinical hyperthyroidism averaging at about 0.4% and 1.2% respectively (6, 7).

Diseases of the thyroid are characterised by benign or malignant disorders affecting the structure and function of the thyroid gland which could lead to hypothyroidism, hyperthyroidism associated thyrotoxicosis, non-thyroid thyrotoxicosis, thyroid cancer and iodine deficiency disorders (IDDs) (8). Interestingly, studies have observed an increased frequency of thyroid dysfunction with advancing age while women have shown a higher prevalence of thyroid disease compared to men (9, 10). Also, the incidence of thyroid dysfunction is higher in diabetic subjects compared to non-diabetics (11). The interface between thyroid dysfunction and diabetes mellitus (DM) have been explored by previous studies. Reports have implicated thyroid dysfunction not only in the accretion of insulin resistance especially in type 2 DM, but also in complicating the management of diabetes (12).

Genetic studies have successfully identified the gene levels that could be used as biomarkers in the prediction of metabolic syndrome (includes insulin resistance and hypertension) (13, 14). Although the direct link (genetic) between thyroid disease and type 1 DM has been well characterised, the genetic basis explaining the high frequency of thyroid disease in type 2 DM patients is just recently being established (15). Recent study however implicated homozygosity for polymorphism (Thr92Ala) of the deiodinase type 2 (DIO2) gene, in the risk of developing type 2 DM among pregnant women with thyroid disease (16). The indirect (metabolic) link between thyroid disease and type 2 DM have been long been predicated.

Since the thyroid hormones are involved in regulation of carbohydrate metabolism, it is expected that their abnormal levels would disrupt carbohydrate homeostasis. Hyperthyroidism leads to increase in the glucose turnover and gastrointestinal absorption that elevates hepatic glucose output, thereby increasing post-absorptive plasma glucose as well as insulin and pro-insulin levels. This raises the insulin requirement and onset of ketoadisis coupled with an increased glucose uptake by peripheral tissues, as a result, peripheral insulin resistance sets in (11, 17). Hyperthyroidism however, slows the absorption of glucose from the gastrointestinal tract and declines peripheral
glucose assimilation, hence, hepatic glucose output reduces and insulin secretion declines. This leads to a decreased peripheral glucose disposal which culminates into reduced peripheral utilisation of glucose and onset of insulin resistance (18, 19).

The ultrasonographical volumetric assessment of the thyroid gland (thyroid volume) has shown more precision in diagnosing thyroid dysfunction than clinical examination or palpation as it is widely used for diagnosis of goiter, follow-up evaluation after treatment of enlarged thyroid as well as other thyroid associated diseases (20, 21). Thyroid hormone imbalance have been reported in patients with Hashimoto thyroiditis as a result of increase in thyroid volume (22-24). Similarly, the association between thyroid volume and presence of thyroid nodules with metabolic syndrome has been previously established in an adult population (25). Thus, an abnormally large thyroid volume is indicative of a thyroid dysfunction.

However, whether thyroid volume-associated thyroid dysfunction is directly involved in the pathogenesis of type 2 DM or act as an effectuator in type 2 DM pathophysiology remains to be unraveled. The aim of this study was to highlight the relationship between thyroid volume, thyroid function and type 2 DM in newly diagnosed patients by evaluating the thyroid volume, thyroid nodule presence, thyroid hormone levels as they relate to diabetic indices of the type 2 DM patients in comparison with those of non-diabetics. This is to recommend optimal screening and assessment of thyroid status by clinicians, in the management of Type 2 DM.

MATERIALS AND METHODS

Study design

One hundred (100) patients, newly diagnosed with type 2 DM at Al-Hussein Teaching Hospital Kerbala, Iraq and 100 non-diabetic volunteers were included in the study. Exclusion criteria include patients with type 1 DM or an established type 2 DM, pregnancy, complicated glycated haemoglobin (i.e. as a result of severe anemia an haemoglobinopathy) and patients on metformin for other reasons such as fatty liver or polycystic ovarian syndrome. The aim of the study was clearly stated to all subjects and written informed consent were obtained. Blood samples were collected after a period of rest, with minimal occlusion of the vein. Random blood sugar (RBS) was measured using a pre-calibrated portable glucometer (CareTouch) and the American Diabetic Association guideline was adopted. Normal random blood sugar was defined as RBS ≤ 140 mg/dL while participants with RBS ≥ 200 mg/dL were defined as diabetics (26). Glycated hemoglobin (HbA1c) was measured using chromatographic-spectrophotometric ion exchange method by Genius diagnostic (Belgium) (27, 28). Normal range was defined as HbA1c between 4.2 - 6.2%, controlled diabetic was defined as HbA1c between 6.7 - 9.1% while uncontrolled diabetic was defined as HbA1c > 9.1% (28, 29).

Thyroid function was evaluated by analysing serum levels of free triiodothyronine (FT3), thyroxine (FT4) and thyroid-stimulating hormone (thyrotropin, TSH) using Miniidas compact multiparametric analyzer (USA). Normal range for FT3 was 0.9-2.4 nmol/L, 9.0-21.0 pmol/L for FT4 and 0.2-4.5 mU/L for TSH (30).

The functional interpretation of thyroid function test was carried out as follows; Primary hypothyroidism was recognized if TSH was greater than 4.5 mU/L and FT3 and FT4 levels were lower than the normal range, subclinical hypothyroidism was recognised if TSH was between 5 and 20mU/L with free thyroid hormones in the normal range (31-33). Primary hyperthyroidism was recognised if free thyroid hormones were raised and TSH was less than 0.2 mU/L while subclinical hyperthyroidism was recognized if TSH was less than 0.2 mU/L but free thyroid hormones are within the normal range (31-33).

Longitudinal and transverse ultrasound scan of the thyroid lobes using the Philips ClearVue 350 Ultrasound Machine (USA) was performed and measurements for depth (D), width (W) and length (L) were recorded. The volume (V) of each lobe was determined using the formula, V (mL) = D (cm) x W (cm) x L (cm)/2 (34), and total thyroid volume (TTV) was estimated from the sum of the volume of right and left thyroid lobes, the volume of the isthmus was not included. All measurements on thyroid in the study were conducted by a single investigator. Statistical analysis was performed with the software program SPSS (version 24.0). All data were presented as mean ± standard deviation and independent t tests was used to compare the status of the thyroid (volume and function) with changes in blood sugar levels between the two groups while Pearson’s correlation was used to observe relationship between thyroid volume and diabetic indices. Statistical significance was set at p value <0.05. This study was approved by the research and ethics committee of Al-Hussein Teaching Hospital, Kerbala.

RESULTS

The 100 newly diagnosed Type 2 DM patients (DM group) included in this study comprised of 44 males and 56 females with the mean age of 40.70±8.02 years while the non-diabetic volunteers (non-DM group) comprised of 61 males and 39 females. As presented in Table 1, the prevalence of thyroid nodules among the study population was 64% for DM group which differed significantly from that of the non-DM group i.e. 29% prevalence. The mean thyroid volume of the DM group was 19.16±4.52 mL and statistical significant difference (p<0.05) was recorded when compared with the non-DM group having mean thyroid volume of 14.91±2.95 mL. Significantly higher values for RBS and HbA1c were recorded in the DM group in relation to the non-DM group i.e. 282.30±45.05 mg/dL (DM group) vs 93.38±2.93 mg/dL (non-DM group) for RBS and 8.11±1.93 % (DM group) vs 5.25±0.22 % (non-DM group) for HbA1c. With the exception of FT4, which was 26.40±2.57 pmol/dL (DM group) vs 13.81±3.71 pmol/dL (non-DM group), there was no significant difference between the two for values of thyroid hormones.

| Table 1: Demographic, thyroid and diabetic characteristics of the participants |
The outcome of the functional interpretation of the thyroid function tests as presented in Figure 1 indicates that 92 out of the 100 non-diabetic volunteers have normal thyroid function with 4 having subclinical hypothyroidism and the remaining 4 having subclinical hyperthyroidism. In the DM group however, 58 patients showed some form of thyroid dysfunction. 19 DM patients had subclinical hypothyroidism, 15 patients had subclinical hyperthyroidism, 10 patients had primary hypothyroidism while primary hyperthyroidism was recorded in 14 DM patients.

Only 8 out of the 100 non-DM participants had subclinical thyroid dysfunction whereas the DM group recorded 58 patients with thyroid dysfunction i.e. 19 subclinical hypothyroidisms, 15 subclinical hyperthyroidisms, 10 primary hypothyroidisms and 14 primary hyperthyroidisms.

To determine whether the thyroid volume and diabetic status of the patients were associated with the observed thyroid dysfunction, comparisons were made between the functional categories for values of thyroid volume, RBS and HbA1c. This data is presented in Figure 2. Apart from patients with subclinical hyperthyroidism, the thyroid volume was significantly higher (p < 0.05) in patients with thyroid dysfunction compared to those with normal thyroid function. Patients with primary hypothyroidism and primary hyperthyroidism showed significantly higher (p < 0.05) levels of serum RBS compared to patients with normal thyroid function. All patients with thyroid dysfunction had significantly elevated HbA1c relative to those with healthy levels of thyroid hormones.
Thyroid volume was significantly higher in patients with thyroid dysfunction compared to those with normal thyroid function except subclinical hyperthyroidism. Patients with primary hypothyroidism and primary hyperthyroidism showed significantly higher levels of serum RBS compared to patients with normal thyroid function while all patients with thyroid dysfunction had significantly elevated HbA1c relative to those with healthy levels of thyroid hormones.

** signifies statistical significant difference compared to those with normal thyroid function at \(p < 0.05 \).

Pearson’s correlation matrix (Table 2) revealed strong uphill correlation between thyroid volume and RBS \((r = 0.56; p = 0.001) \) as well as HbA1c \((r = 0.56; p = 0.001) \), while the presence of thyroid nodules showed moderate downhill correlation with thyroid volume \((r = -0.26; p = 0.001) \), RBS \((r = -0.29; p = 0.001) \) and HbA1c \((r = -0.24; p = 0.001) \).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Thyroid volume</th>
<th>RBS</th>
<th>HbA1c</th>
<th>Thyroid nodule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid volume</td>
<td>0.56**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBS</td>
<td>0.56**</td>
<td>0.89**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1c</td>
<td>-0.26**</td>
<td>-0.29**</td>
<td>-0.24**</td>
<td></td>
</tr>
<tr>
<td>Thyroid nodule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**. correlation is significant at the 0.01 level (2-tailed).
*. correlation is significant at the 0.05 level (2-tailed).

DISCUSSION

Our study analysed the comprehensive thyroid status of newly diagnosed type 2 DM patients with the findings buttressing the relationship between thyroid dysfunction and onset of DM as reported by previous studies. This was first perceived from the high prevalence of thyroid nodules observed in the DM group of the present study as recent studies have suggested that the growth and development of thyroid nodules is related to insulin resistance and endogenous hyperinsulinemia in diabetic patients (35). Insulin resistance associated with type 2 DM have shown constant link with changes in thyroid morphology and hence affects the formation of nodules (36). Consequently, patients with pre-diabetes and diabetes have higher risk of developing thyroid nodules as well as increased thyroid volume (25).

It has been revealed that thyroid volume in type 2 DM forms as a result of chronic insulin resistance through stimulation of thyroid cell proliferation via the mitogen-activated protein kinase (MAPK) pathway (37). Nodularity of the thyroid could be suggestive of an existing metabolic dysfunction and can serve as an indicator of metabolic syndrome in otherwise non diabetic individuals as high prevalence of thyroid nodules have been reported in patients with metabolic syndrome with a positive correlation found between the degree of metabolic disorder and the occurrence of thyroid nodules (38).

Most noteworthy however, is the thyroid volume which is the widely used parameter for evaluation of pathological factors like iodine deficiency or multinodular goiter, thyroiditis, thyroid cancer, as well as the efficacy of levothyroxine therapy (39). Although variations in thyroid volume could be related to dietary iodine intake (40), ethnic
once receiving metformin

Experimental, making its assessment useful in

t of thyroid status,

t of particular interest however, is the effect

may monitor diabetes management and therapy

blood glucose level

elevations in HbA1c was implicated in the development of

hypothyroidism, primary hyperthyroidism,
as significantly larger thyroid was recorded in

secretion despite having normal thyroid hormon

insulin resistance which are characteristic of chronic
diabetic condition.

It is important to indicate that the limitations of this study
include exclusion of some factors that can affect thyroid
function such as genetics, gender, age, anthropometric
measurements from our analysis. Also, the relatively small
sample size further narrowed the number of DM patients
having thyroid dysfunction.

CONCLUSION

In conclusion, this study has provided experimental
evidences that highlights the subsistence of thyroid
dysfunction in type 2 DM - suggesting that the thyroid
condition worsens with severity of the diabetic status. With
large variations among different guidelines on assessment
of thyroid dysfunction in newly diagnosed type 2 DM patients
(with recommendations ranging from zero assessment
to yearly intervals), this study hints that the prevalence and
significance of thyroid dysfunction in type 2 DM is
comparable to that of type 1 DM. Therefore, we recommend
that baseline as well as routine assessment of thyroid status
be conducted in type 2 DM patients.

ACKNOWLEDGEMENTS

The authors wish to thank the Internal Medicine
Department of college of Medicine, University of Kerbala
for support.

REFERENCES

1. Tunbridge W, Evered D, Hall R, Appleton D, Brewis
M., Clark F, et al. The spectrum of thyroid disease in a
community: the Whickham survey. Clinical

2. Khattak RM, Ittermann T, Nauck M, Below H, Völzke
H. Monitoring the prevalence of thyroid disorders in
the adult population of Northeast Germany.

3. Alam Khan V, Khan MA, Akhtar S. Thyroid

4. McCahon D, Haque MS, Parle J, Hobbs FR, Roberts
LM. Subclinical thyroid dysfunction symptoms in
older adults: cross-sectional study in UK primary care.

5. Razvi S, Leng O, Jabbar A, Bano A, Ingoe L, Addison
C, Thomas H, Carey P, Junoé S, Austin D, Greenwood JP. Sample timing, diagnosis of subclinical
tyroid dysfunction and mortality in acute myocardial
infarction: ThyrAMI1 study. The Journal of Clinical
Endocrinology & Metabolism. 2020 Apr;105(4):e1299-
306.

14. Degirmenci I, Ozbayer C, Kebapci MN, Kurt H, Colak E, Gunes HV. Common variants of genes encoding TLR4 and TLR4 pathway members TIRAP and IRAK1 are effective on MCP1, IL6, IL1β, and TNFα levels in type 2 diabetes and insulin resistance. Inflammation Research. 2019;68(9):801-14.

