
Sys Rev Pharm 2020;11(7): 382-392                              
A multifaceted review journal in the field of pharmacy                                                   

 

382                                                                          Systematic Reviews in Pharmacy                                  Vol 11, Issue 7, July-Aug 2020 

Extended-spectrum beta-lactamase (ESBL)-producing 

Eschericia coli from livestock 
 
Agus Widodo1, Mustofa Helmi Effendi2*, Aswin Rafif Khairullah1  
 

1Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia. 
2Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia. 

 

*Corresponding Author E-mail: mheffendi@yahoo.com 

 

 

ABSTRACT 
Extended-spectrum β-lactamases (ESBL) are enzymes produced in Gram 
negative bacterial plasmids that already have resistance to β-lactam 
antibiotics. Bacteria Escherichia coli (E. coli) and Klebsiella pneumoniae are 
the most common ESBL-producing bacteria and are often detected as the 
cause of urinary tract infections, pneumonia and sepsis. ESBL-producing 
bacteria are generally known as infectious agents and considered as 
nosocomial pathogens. In the last decade the existence of livestock as animals 
transmitting and spreading ESBL has become a potential issue of new threats 
to humans. In this study, we describe the nature of ESBL, ESBL which produces 
type E. coli from livestock, factors that influence ESBL, transmission to human 
health, epidemiology of ESBL that produces E. coli in a global view, ESBL 
treatment, and ESBL control. Livestock provide animal protein in the form of 
meat and milk that are included in the global supply chain of trade and food. 
Feces animal waste production is a potential source of contaminants for the 
possible spread of ESBL bacteria to humans and the environment. ESBL 
treatment in humans is still very limited so preventing the spread of infection 
through the one health principle approach is the best way that can be done.  
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INTRODUCTION 
Extended-spectrum β-lactamases (ESBL) are enzymes 
produced in the Gram negative bacterial plasmid of the 
Enterobacteriaceae group that already have resistance to 
β-lactam antibiotics [1,2]. Most commonly known ESBL-
producing bacteria [2] are Escherichia coli (E. coli) and 
Klebsiella pneumoniae (K. pneumonia) and are often 
considered as major cause of urinary tract infections (UTI), 
pneumonia and sepsis [2, 3]. CTX-M β-lactamase is most 
common ESBL enzyme in humans [5], while the variation 
of the subtype depends on the geographical area [6]. These 
ESBL-producing bacteria are nosocomial pathogens and 
increasingly found as infectious agents in the community 
[4]. The incidence of ESBL-producing bacteria has been 
widespread in the veterinary field, for example as a cause 
of mastitis in dairy cows [7] since 2000 [8, 9]. Research on 
these bacteria in livestock is important in order to 
ascertain the presence of these ESBL bacteria in sick and 
healthy cows, pigs and poultry farms [10-14]. The CTX-M 
group, has been found in many parts of Europe, especially 
CTX-M-1 β-lactamase which is often detected in cattle [6]. 
The risk of zoonotic migration from livestock to humans 
that is directly in contact with livestock is still largely 
unknown. There are several studies that have shown a link 
between the transfer of E. coli or ESBL-producing ESBL 
genes from poultry, pigs to humans in direct contact with 
these animals [15-18]. In addition to direct zoonotic 
transfer, food derived from animals can potentially be a 
risk factor for bacterial colonization or infection in humans 
[19, 20]. Bacteria, which produce ESBL are not only found 
in livestock, but are already widespread in pets [8, 21], zoo 
animals [22] and wildlife [23-25]. In this study, we 
describe the nature of ESBL, ESBL which produces type E. 
coli from livestock, factors that influence ESBL, 
transmission to human health, epidemiology of ESBL that 
produces E. coli in a global view, ESBL treatment, and ESBL 
control. 
 

Nature of ESBL 
ESBL can hydrolyze the antibiotic oxyimino-beta-lactam 
which is currently an important therapeutic agent for the 
treatment of serious infections in humans and animals. 
ESBL was first detected in Enterobacteriaceae as a new 
taxonomy in 1983 and since then, scientific research has 
continued to examine the ESBL-producing 
Enterobacteriaceae (E-ESBL) as a real challenge to human 
lives. The incidence of 1700 deaths in the US due to 
treatment failure in severe infections in 2013 is 
inseparable from the increased ability of bacteria to 
hydrolyze antibiotics [26-28]. The occurrence of E-ESBL is 
not only limited to infections in the hospital environment, 
but has become a common human intestinal commensal 
disease [29, 30]. E-ESBL are present in various segments 
of ecosystem and are great concern to human, animals and 
environment. These segments of ecosystem can provide 
conducive environment for the spread of bacterial 
resistance. Animals become the transmission and 
distribution of E-ESBL because their position is directly 
related to the food chain in humans [31]. 
Livestock provide animal protein and are also source of 
meat and milk that is most consumed by humans, as well 
as being a major element in the food chain in humans [32]. 
Livestock are also the main source of compost through the 
resulting faecal mass [33]. All this puts livestock in an 
important position in the food chain and the environment, 
especially its role as a reservoir and transmission of the 
spread and threat of E ESBL to the health of the world 
community. The inclusion of E-ESBL in ecosystems has 
raised concerns from various scientific communities and 
authorities involved in the One Health approach [34]. 
In Southeast Asia and Indonesia, based on several reports, 
E-ESBL has been found, the occurrence not only in humans 
but also in animals mainly livestock. Studies on milk 
samples from dairy farms have reported 8.75% positive 
ESBL [35]. In the beef cattle feces sample at the abattoir, 
15.8% ESBL of E. coli bacteria were found and after 8.6% 
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CTX-M was identified [36, 37]. Molecular identification of 
rectal dairy swabs produced 5.21% positive ESBL E coli 
with 6 blaCTX-M gene isolates and 2 blaTEM gene isolates 
[38]. Another study identified ESBL by the Vitek-2 method 
from a rectal dairy swab resulting in 6% positive ESBL E. 
coli [38]. Dairy cows can be potential as a reservoir for the 
spread of E coli ESBL bacteria to humans. ESBL e coli can 
be a threat to human health as well as a dangerous 
outbreak for the general public. Food chain contamination 
related to ESBL bacterial colonization is a risk that is 
difficult to deal with and control, especially in the era of 
globalization of trade, hygienic aspects and free of 
bacterial agents in food products of animal origin are 
important things to do so that the threat of the spread of E 
coli ESBL from animals to humans can be finalized. 
ESBL is an enzyme produced in bacterial plasmids that is 
globally classified into several variants, namely CTX-M, 
SHV and TEM. But there are also other types of ESBLs such 
as OXA, PER, VEB, BES, GES, SFO, TLA, and IBC [39]. CTX-M 
is common type of ESBL associated with the E-ESBL report 
[40]. Variants such as CTX-M-15 have been documented to 
be the cause of outbreaks of infection throughout the 
world, related to the clone that causes the antibiotic-
resistant E. coli infection that is resistant to the antibiotic 
ST131 [41]. 
The emergence of ESBL variant enzymes mediated by 
plasmids such as CTX-M has also been reported since the 
1980s [42]. ESBL type CTX-M can hydrolyze cefotaxime, 
ceftiofur, cefquinome, broad-spectrum cephalosporins of 
animals, and ceftriaxone. Unlike the previous variant ESBL 
enzyme namely TEM and SHV which only has penicillinase 
activity. Since around the 2000s, ESBL type CTX-M has 
been more widely studied throughout the world [5] than 
ESBL derivatives of TEM and SHV. 
The CTX-M type ESBL was initially described as MEN1 
[42], and Toho-1 [43], and later designated as the CTX-M-
1 type, and CTX-M-44. CTX-M-type β-lactamases reported 
in Kluyvera species, members of the Enterobacteraceae 
family intrinsically have unique genes on their 
chromosomes as encoding CTX-M-like β-lactamases such 
as KLUA-1, KLUA-2, KLUC-1 and KLUG-1. K. georgiana 
encodes an enzyme that is very similar (99%) to CTX-M-8 
in amino acid sequence levels [44], which was first 
identified in Enterobacteriaceae isolated from humans in 
Brazil [45] and later found also in poultry and chicken 
meat samples worldwide [46, 47]. Because the β-
lactamase-like CTXM gene mediated by the chromosome 
of the Kluyvera species has little or no promoter activity in 
the upper reaches of the gene, they tend to be silent. 
Therefore, Kluyvera species are usually susceptible to 
cefotaxime [48-51] despite having intrinsic genes such as 
blaCTX-M. However, the translocation of the β-lactamase 
chromosome gene from the Kluyvera species into several 
plasmids with sequence insertion functions, such as ISCR1 
[52], and ISEcp1 [53], which has promoter activity 
provides resistance to oxyimino-cephalosporin through 
constitutive and multicopy expression of the β- gene 
lactamase. 
Besides the CTX-M type ESBL, there are other small ESBL 
groups such as GES-1 [54], VEB-1 [55], BES-1 [45], SFO-1 
[56], TLA-1 [57], and PSE -2 / OXA-10 [58, 59] has also 
been reported from sick patients. This small ESBL also has 
a serine residue in the active site of each enzyme, and 
belongs to class A except for OXA type ESX types such as 
OXA-10 and OXA-11 which are classified into class D β-
lactamase [60, 61]. As for type-G and β-lactamase type-
GES, unique variants that have carbapenemase activity 
such as GES-5 [62, 63] and OXA-48 [64, 65], have appeared 

in Enterobacteriaceae, and the identity of amino acids 
between OXA- 10 ESBL and OXA-48 carbapenemases are 
44% although including different clades. 
 
ESBL Types Reported in E. coli From Livestock 
Globally, researchers are currently focusing on identifying 
important components of the ESBL bacteria, for example 
the CTX-M type, which broadly has a wide variety of 
plasmid particles or certain bacterial clones [66]. 
Regardless of where the ESBL bacterial particles originate, 
the identical type of beta lactamase plasmid that occurs in 
humans and animals, has recently become the focus of 
global research [67, 68]. 
The most common types of ESBL are CTX-M-1, CTX-M-14, 
CTX-M-15, SHV-12, and CMY-2. CTX-M-14 and CTX-M-15, 
are found in humans. CTX-M-1 widely distributed in 
Europe among animals (pets, 28%; poultry, 28%; cattle 
and pigs, 72%). In general, CTX-M-14 is one of the most 
common types of beta lactamase in pets and poultry in 
Asia (30-33%), and to a lesser extent in cattle and pigs 
(14%). This is less common in cattle (4-7%) in Europe, and 
is not even found in pets [68]. 
The CTX-M-15 type has spread in a pandemic in humans 
[66], whereas in pet animals about 15% and cattle / pigs 
around 8% are related to this type. In spite ESBL diversity, 
CMY-2, is most common AmpC variant. Therefore, the 
similarity of ESBL type distribution patterns only applies 
to humans; but does not apply to groups of animals, where 
the distribution patterns observed are still very diverse.  
CTX-M-1 is the main type of ESBL in cattle and pigs in 
Europe, with 72% of all ESBLs, as well as in poultry and 
pets also often found. In humans the type CTX-M-1 found 
7% of all types of ESBL and this only applies in Europe. 
However, CTX-M-1 identified as the most common type of 
ESBL found in retail human, poultry and chicken patients, 
suggesting new cross-transmission between human and 
poultry hosts [69, 19]. In Indonesia there are some data on 
genetically confirmed sources of ESBL producing E. coli 
from cows, chickens and dogs [70-74]. 
The link between chicken meat contamination and the 
emergence of ESBL genes in humans, as well as the 
transmission of ESBL-producing bacteria from poultry to 
humans is a concern, although there is no evidence to 
confirm this. The literature on evidence of the spread of 
ESBL-carrying organisms through direct contact with 
livestock, is still limited [67]. Based on collective data from 
the available studies revealed that there are significant 
differences in the types of ESBL between poultry and 
humans in Europe, this all raises big questions for all 
parties about the role and contribution of livestock to the 
spread of ESBL in humans. 
 
ESBL influencing factors 
β-lactam based antibiotics most commonly use against 
bacterial infections [75]. β lactamase is major cause of 
antimicrobial resistance, especially E. coli bacteria [76]. Β-
lactamse enzymes are mutated continuously in response 
to the excessive use of antibiotics ESBL. There are several 
types of mechanisms that affect the resistance of ESBL 
bacteria to antibiotics, including through the enzymatic 
inactivation of antibiotics, changes in target sites, 
decreased porous permeability and active pumping of 
bacterial efflux [75]. Plasmid-mediated enzymes can 
originate from TEM point mutations in SHV β-lactamase 
which are widely distributed among Enterobacteriaceae 
[77, 39]. In recent years, several new ESBLs such as CTX-
M, PER, VEB, and the GES lineage have emerged [78]. ESBL 
deactivates β-lactam antibiotics that contain oxyimino 
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groups such as oxyimino-cephalosporin and oxyimino-
monobactam [39]. Whereas cephamycins and carbapenem 
and are usually inhibited by β-lactamase inhibitors such as 
clavulinic acid, sulbactam, and Tazobactam [79, 80]. 
The emergence of ESBL-causing bacteria was first 
discovered in Japan, where E. coli bacteria produce CTX-
M-2 which was detected in cattle dung from various 
important areas close to the center of the country [81]. E-
ESBL has been reported in cattle in 39 countries, with 
concentrations occurring in Europe (n = 16) and Asia (n = 
13) [82-83]. ESBL types were detected in cows, for 
example from the CTX-M type group with a higher 
prevalence of CTX-M-1, CTX-M-14 and CTX-M-15 types. 
Type CTX-M-1 was reportedly detected in 20 countries 
and most often found in European regions. CTX-M-1 type 
ESBL was first discovered in humans in 1989 in 
Germany[84-86]. The variant types CTX-M-15 and CTX-M-
14 are the CTX-M enzymes because of their large and 
widely spread ability associated with severe outbreaks 
and extraintestinal infections [40, 41, 87]. The CTX-M-14 
variant type is found in cattle in 13 countries, mainly in 
Europe and Asia. The CTX-M-14 type was first reported to 
be identified in humans in 2002 from a hospital in China 
[88, 89]. ESBL bacteria isolated from human types CTX-M-
14 reported in European countries, Asia, North and South 
America, Africa and Oceania, are often associated with 
pandemic clones such as E. coli ST131 which is the cause 
of outbreaks in recent years. [66, 90-96]. The CTX-M-15 
type was first reported in 2001 from the ESBL bacterial 
isolate in India. The CTX-M-15 type is the most widely 
found and most important ESBL variant of all types, 
because there are many important correlations in human 
health and ESBL clones [40, 41, 97-100]. 
The CTX-M-15 type is widely reported on all continents 
and has been detected in all major ecologies. The CTX-M-
15 type is an example of the type of enzyme produced by 
the ESBL bacteria and it involves the circulation of groups 
of resistant bacteria along with resistance genes among 
ecological elements which are currently being controlled 
through the prism of the "One Health" approach [90 , 101-
108]. 
 
Transmission to human health 
Humans with carier status are the main factors spreading 
ESBL in the general public. Animals and the environment 
are other factors that support the ESBL occurrence in 
humans. Longitudinal studies and ongoing monitoring are 
needed, because the spread of ESBL is not possible 
independently without transmission to and from non-
human sources such as animals and the environment. 
Humans with patient status will be at higher risk of being 
infected by ESBL bacteria, especially in patients with 
prolonged treatment and associated with invasive medical 
equipment [39]. Other risk factors for infection were also 
found in individual studies, including the presence of 
nasogastric tubes [109] gastrostomy or jejunostomy tubes 
[110,111] or arterial lines [112] total administration of 
parenteral nutrition [113] recent operations [114], 
hemodialysis [115], decubitus ulcers [116] and poor 
nutritional status [116]. Excessive misuse of antibiotic use 
is also a risk factor for the acquisition of ESBL-producing 
organisms [113,117,118]. Several studies have found an 
association between the use of third generation 
cephalosporins and the acquisition of ESBL-producing 
strains [109,110,117,119]. However, major risk factor for 
nosocomial acquisition of ESBL-producing organisms is 
accommodation in wards or rooms with other patients 

with ESBL-producing organisms [120]. Risk factors for 
infection with CTX-M type ESBL-producing organisms are 
history of hospitalization, treatment with cephalosporins, 
penicillins and quinolones, age 65 years or higher, 
dementia and diabetes [39]. 
To date there is no evidence, a potential source of 
colonization and the incidence of ESBL in society derived 
from the use of oxyimino cephalosporins in animals such 
as ceftiofur in livestock [120]. However, infections caused 
by the ESBL bacteria have spread and occur in the general 
public, just as they did in the hospital environment 
[121,122]. ESBL bacteria have become a threat to human 
health and as a cause of epidemics that threaten the lives 
of people, especially the elderly. Most of the bacteria 
associated with human enteric diseases come from 
animals and can be transmitted directly from animals to 
humans or indirectly through food of animal origin, from 
contaminated water or through reservoirs [123, 124]. 
Foods of animal origin have a higher risk making it difficult 
to handle and control. In the global era of trade, the 
existence of ESBLs in products of animal origin is a threat 
that must be taken seriously. 
Many sources of exposure have the potential to spread 
infection, causing epidemiological investigation to be very 
difficult. The interaction at the microbial level in humans 
and animals, especially between commensal bacteria with 
pathogenic bacteria, facultative bacteria and obligate 
bacteria in the same environment and the horizontal gene 
transfer of bacteria makes the distribution of resistance 
genes among various bacterial species becomes wider. To 
understand and identify the possibility of preventing the 
spread of resistance and infection in humans, an 
integrative approach such as 'One Health' is needed 
[125,126]. The application of the concept of global 
integration is assumed to accelerate the prevention and 
prediction of diseases as an effort to control zoonotic 
diseases [127,128]. 
 
Epidemiology ESBL Producing E. coli - a global view 
The first E-ESBL occurrence in cattle was reported in 
Japan, CTXM-2 type E coli bacteria were detected in cattle 
feces from the central region of the country [81]. Since it 
was first discovered until now, ESBL has been described in 
cattle in 39 countries, with more concentrations in Europe 
and Asia as shown in Figure 1. The origin of E-ESBL varies, 
isolated from healthy animals (faecal samples) or from 
clinical animal (mastitis, diarrhea, infection, or with other 
pathologists). Countries with the highest number of E-
ESBL reports in cows include Britain, Germany, France and 
the United States, as well as the world's first to third 
largest cattle producers, all in Europe [82,83]. Of the five 
largest livestock producers in the world (United States, 
Brazil, European Union, China and India) have reported 
commensal or clinical E-ESBL detected in their livestock. 
ESBL types that are most often detected in cows, are 
included in the CTX-M type group with a higher 
prevalence, namely CTX-M-1, CTX-M14 and CTX-M-15 
types. Type CTX-M-1 is reported in 20 countries, with the 
highest prevalence in Europe and is also found in 
Germany, Denmark, Spain, Finland, France, Hungary, 
Portugal, the Netherlands, United Kingdom, Czech 
Republic, Slovakia, Sweden, Switzerland and Turkey. Type 
CTX-M-1 was first reported as a type of E-ESBL production 
enzyme in humans in Germany precisely in 1989, then it 
was also reported in other European countries such as 
Spain, France, Italy and England as well as in Asia and 
North America [84-86].
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Figure 1. World map illustrating the countries with description of E-ESBL in livestock [129] 
 
The CTX-M-15 and CTX-M-14 types are the most 
important CTX-M enzymes because they are mostly diffuse 
and are associated with severe extraintestinal infections 
[40, 87, 41]. The CTX-M-14 type is reported in cattle in 13 
countries, mainly in Europe (Germany, Belgium, France, 
the Netherlands, the United Kingdom, and Switzerland) 
and in Asia (China, South Korea, Hong Kong, Japan, and 
Taiwan), and United States and Oceania. Type CTX-M-14 
was first reported in 2002 from a hospital in China [83, 
84]. E-ESBL isolated from human type CTX-M-14 has been 
found in Europe, Asia, North and South America, Africa and 
Oceania, often associated with pandemic clones such as E. 
coli ST131 which became an outbreak in recent years [66, 
90-96]. 
The CTX-M-15 type was first discovered in 2001 from an 
E-ESBL isolate in a hospital in New Delhi, India. At present 
the CTX-M-15 type is the most widely spread enzyme type 
and is more important than all other types, because it is 
related to human health and E-ESBL clones [40,41,97-
100]. The type of CTX-M-15 producing E-ESBL in cattle is 
found in 21 countries around the world, detected in most 
of Europe including Germany, France, Italy, the 
Netherlands, England, Sweden, Switzerland and Turkey. In 
Asia found in China, South Korea, India, Israel, Japan, 
Lebanon and Taiwan. Also found in North and South 
America (Brazil, Canada, and the United States) and Africa 
(Egypt, Tanzania, and Tunisia). The CTX-M-15 type has 
been reported on all continents (Europe, North America, 
South America, Asia, Africa, Oceania, and Antarctica with 
its main ecological detection including humans, animals 
and the environment. ESBL enzyme CTX-M-15 type is an 
example a serious threat to public health, the interaction 
of circulating bacterial resistance genes with 
environmental resistance genes makes the One Health 
approach important [85, 96-103] Virulence and multi-
resistance type CTX-M-15 produced by E. coli clones. 
O25bST131 is one of the most adaptive circulant clones 
among E-ESBL, which causes epidemics and deaths 
worldwide, not only related to deaths due to infection, but 
also due to bacterial colonization in human and animal 
intestines and environmental contamination [29,130-139]  
 
Treatment of ESBL 
The presence of ESBL bacteria that have multidrung 
resistant properties makes the choice of antibiotics for 

treatment very difficult especially in patients with serious 
infections such as blood flow-related infections (BSI) 
[140]. Research has consistently shown that infections due 
to ESBL-producing Enterobacteriaceae are associated 
with time delays in attempting appropriate antibiotic 
therapy at the onset of infection, thereby extending 
hospital stay which ultimately results in increased medical 
costs at the hospital. Failure to choose antibiotics for 
treatment early in the infection has an effect on the 
mortality rate of patients in the hospital to be higher. 
Clinical trials relating to the treatment of ESBL-producing 
bacterial infections are still very rare. The majority of 
clinical studies published by most journals are still 
observational (eg, retrospective cohort in design) or are 
case series and are still limited to reports. Therefore, many 
studies are still experiencing limitations on the principle 
and important, including difficulties in determining the 
potential and habit of information and difficulty 
determining treatment control in clinical trials in an effort 
to obtain accuracy in a clinical trial [141]. 
The choice of antibiotics for the treatment of infections 
due to ESBL-producing Enterobacteriaceae was reviewed 
in detail in 2008 [4], 2010 [140], and more recently in 
2018 [140]. Carbapenems, including imipenem, 
meropenem, doripenem, and ertapenem, are the first 
choice agents used for the treatment of serious infections 
due to ESBL-producing Enterobacteriaceae [141]. 
Carbapenem is a group of antibiotics that are very stable 
against hydrolysis by ESBL. Carbapenem group antibiotics 
are distributed to various body tissues in high 
concentrations and there is a lack of inoculum effect that is 
when the MIC concentration (minimal inhibitory 
concentration) of antibiotics increases with increasing 
inoculum size or the number of bacteria tested, the ability 
of antibiotics to inhibit antibiotics will also decrease [140] 
. The potential weakness of the use of carbapenem 
antibiotics lies in the relatively high cost of antibiotics and 
diagnostic laboratory costs for determining the type of 
bacteria that is resistant to carbapenem. 
Significant efforts have been made among specialist 
infectious disease specialists and medical microbiologists 
to look for alternative and more cost-effective treatment 
options besides the use of carbapenem antibiotics. The 
effectiveness of drug action is the most important and the 
main choice in efforts to inhibit serious infections due to 
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ESBL-producing Enterobacteriaceae. The use of 
pipercillin-tazobactam and amoxicillin-clavulanic acid as a 
combination of β-Lactam-β-lactamase inhibitors has been 
shown to have activity against ESBL-producing bacteria 
and its role as an infectious treatment agent which was 
reviewed in detail during 2015 by Harris et al. [142], in 
2017 by Muhammed et al [143], and finally by Rodriquez-
Bano in 2018 [141]. Based on retrospective data in the 
publication it was concluded that the combination of β-
lactam-β-lactamase is not inferior to carbapenem and can 
be used as a therapeutic option other than carbapenem, 
especially if the source of infection comes from the urinary 
tract, namely urosepsis. 
 
ESBL control 
Efforts to control and prevent infection are very important 
to prevent the spread and epidemics of ESBL-producing 
bacteria. The agent for spreading the ESBL bacteria is in 
the digestive tract system. Alternative distribution agents 
can be in the form of oropharynx, colonized sores, and 
urine. Health workers' hands and medical devices are 
contaminated with agents an important factor in 
spreading infection among patients [76]. Important 
overall infection control efforts must be made including 
avoiding the use of unnecessary invasive devices, 
handwashing procedures for hospital staff, increasing 
prevention and isolation of patients indicated or infected 
by ESBL bacteria. 
At the institutional or institutional level, prevention can be 
done by making some direct actions to minimize the 
spread of ESBL-causing organisms such as clinical and 
bacteriological supervision of patients treated in intensive 
care units and surveillance of antibiotic use cycles, as well 
as antibiotic use restriction policies, especially on 
empirical use of antimicrobial agents broad spectrum such 
as third and fourth generation cephalosporins and 
quinolones [39, 76, 144]. 
Some researchers have suggested using a combination of 
β-lactam / β-lactamase inhibitors rather than 
cephalosporins. The combination of β-lactam / β-
lactamase inhibitors can work empirically in severe 
infections, it is suspected that there are specific agents 
against gram-negative bacteria that can control the 
formation of enzymes in ESBL bacteria [145-147]. 
However, many microorganisms now produce several 
types of β-lactamases, which can reduce the effectiveness 
of the β-lactam / β-lactamase combination [88,148-153]. 
 
Conclusion 
Extended-spectrum beta-lactamases (ESBL) are enzymes 
produced by bacteria with the special ability to hydrolyze 
the antibiotic oxyimino-beta-lactam which is currently an 
important therapeutic agent for the treatment of serious 
infections in humans and animals. The year 1983 was the 
beginning of the discovery of the ESBL bacteria from the 
Enterobacteriaceae group of bacteria and since then 
scientific research has continued to conduct research on 
ESBL-producing bacteria (E-ESBL) as a real threat to 
human health. In its development the incidence of ESBL is 
not only limited to infections in the hospital environment, 
but has become a common human intestinal commensal 
disease in the wider community. 
The existence of livestock being the transmission and 
distribution of ESBL animals is a potential new threat 
because it is directly related to the food chain in humans. 
Livestock are one of the main sources of animal protein, 
including the source of meat and milk that is most 
consumed by humans, as well as being a major element in 

the food chain in humans. Livestock are also animals that 
produce a large capacity of faeces with the potential to 
transmit bacterial infectious agents to humans through 
contamination pathways. Most enteric diseases in humans 
originate from animals that are transmitted directly from 
animals to humans or indirectly through food derived 
from animals or faecal contaminated water.  
The distribution pattern of the spread of ESBL enzymes 
globally in humans and animals can be a reference and 
consideration in efforts to prevent and treat ESBL bacterial 
infections. The CTX-M enzyme type is an enzyme variant 
that is widely found in various substances in humans, 
animals and the environment. The CTX-M-15 type has 
been widely reported on all continents and has been 
detected in all major ecological aspects including humans, 
animals and the environment. Treatment of ESBL-
producing bacterial infections in clinical trials is still very 
rare. Until now most clinical studies are still observational 
or are a series of cases and are still limited to reports. 
Carbapenem antibiotics, are the first choice used for the 
treatment of serious infections due to the ESBL-producing 
Enterobacteriaceae, but the cost of treatment in this class 
of drugs is still relatively high. Treatment using a 
combination of β-Lactam-β-lactamase inhibitors such as 
pipercillin-tazobactam and amoxicillin-clavulanic acid as 
an infectious treatment agent based on retrospective data 
from several journals is not inferior to carbapenem class 
drugs, especially if used at sources of infection that 
originate from the urinary tract or urosepsis. 
Given the many substances that affect the spread of 
infection and the danger posed by ESBL bacterial 
infections in humans, animals and the environment, 
prevention efforts are more important than treatment. 
Therefore,control and prevention through the principle of 
the "One Health" approach is the best way that can be 
done. 
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