Generating the Responses Immune with Honey, Saussurea costus, and Nigella Sativa in Cellular and Humoral May Resolve COVID-19?

Sumarno Reto Prawiro¹, Khoirul Anam², Bobi Prabowo³, Rendra bramanthi¹, Avin Ainur Fitrianiingsih², Dwi Yuni Nur Hidayati¹, Siwipeni Imawati¹, Etty Fitria¹, and Sri Winarsih¹.

¹Department of Clinical Microbiology, Faculty of Medicine, University Brawijaya Malang Java Indonesia
²Doctoral Degree Program, Faculty of Medicine, University Brawijaya Malang Java Indonesia
³Magister Degree Program, Faculty of Medicine, University Brawijaya Malang Java Indonesia

ABSTRACT

Backgrounds: Covid-19 has become pandemic in the world, including Indonesia. Some Indonesia Covid-19 people tried to consume Honey, Saussurea costus, and Nigella sativa for curing the Covid-19 disease. From many testimonies, citizen Indonesia people with no need to take hospitalization have reported a cure if they consumed it.

Aims: To make evidence-based medicine that Honey, Saussurea costus dan Nigella may cure the Covid-19

Methods: We used to post only control design and mice as an animal model. The research divided mice into two groups, and the first group as control received PBS as a placebo. Then the second group, we gave Honey, Saussurea costus dan Nigella sativa. All of the regiment enters the mouth with special sonde to reach the gastrointestinal organ. After administration regiments a long three weeks, we sacrificed the mice. We evaluated cellular immune responses that are Th2, Th17, and NK cells. We check for humoral immune response, TGF-B, IL-17A, sIgA, IL-4, IL-6, 4, 8, def, and IgG.

Results: We got deference Th2 and Th17 between control with treatment group (p=0.05) statistically from the cellular immune response results. Then there was no statistical difference of NK cells between the control with the treatment group (p=0.05). For markers, humoral immunity all has deference between control with treatment group (p=0.05) statistically, but one (IL-17A) have no statistical difference.

Conclusions: We want to continue studying immune responses in humans with COVID-19 if giving Honey, Saussurea coctus, and Nigella sativa.

Keywords: Respons immune, Honey, Saussurea coctus, Nigella sativa, COVID-19

Correspondence: Sumarno Reto Prawiro
Department of Clinical Microbiology, Faculty of Medicine, University Brawijaya Malang Java Indonesia
Email: retopraviros@yahoo.com

INTRODUCTION

Sarco2 causes Coronavirus Disease-19 (COVID-19), which indicates an acute respiratory infection and is highly contagious. Fever with a temperature above 38°C is a sign of COVID-19 sufferers. Besides these signs, we can also find other symptoms such as dry cough, fatigue, dyspnea, and difficulty breathing (1,2,3). COVID-19 was first discovered in December 2019 in the South China Seafood Market in Hubei Province, China (4).

Until now, scientists in the health sector have not been able to overcome the disease, which is still a pandemic. Based on World Health Organization data dated January 17, 2021, 93,194,922 confirmed cases of SARS-CoV-2, with 2,014,729 deaths in 220 countries globally. In Indonesia alone, there were 896,642 confirmed cases with 25,767 deaths (3.1%). Treatment of COVID-19 at our hospital, namely the General Hospital dr Islak Tulungagung Indonesia uses several types of standard drugs. The drug includes avigan/favipiravir/oseltamivir as an antiviral, levofoxacin/azithromycin as an antibiotic, and high doses of vitamins C, D, and there is more as symptomatic medicine. We have also used passive antibodies for the challenging disease (5). Our hospital also performs this convalescent plasma therapy method.

Indonesia has around 250 population people and is the most significant Muslim population in the world. They refer to the Holly Qoran 16:69 that Honey can improve body health (6). Meanwhile, the Hadiths of Buchori 5715 dan 5696 noted that Sausseria coctus and Nigella sativa could cure lung disease (7). In believing this statement, many Indonesian Muslim people try to cure COVID-19 used Honey, Sausseria coctus, and Nigella sativa (HSN). Many cases of COVID-19 use these preparations that do not require hospital treatment. Some reports are not well documented; they may say a complete recovery. Of the many testimony’s researcher want to reveal herbs’ role above, it is possible to cure COVID-19. The results of this evidence base study, if they can prove the benefits of these herbs for COVID-19 therapy, will be a breakthrough.

This study used the immunity paradigm infection in cellular and humoral immune responses and a phase one clinical trial using mice.

THE METHODS

We use the post control only design method and the animal model in mice. We take six mice in every group, and our research requires two groups. Ideally, each group at least contained 20 mice. The content mice in each group were six because the study was part of our umbrella study. In our umbrella study, there are seven treatment groups. So, with the consequence of our report, every group contains six mice. We expect this writing to be more focused by separating its title from the other’s treatment. The umbrella of this research is to find alternative therapies and prevention of covid-19. The first group was mice treated with HAS, while the second group gave phosphate buffer saline (PBS). Our study gets the Honey from the beekeeping in Pati, Central Java, Indonesia for the refined powder Sausseria coctus we buy from Saudi Arabia. Meanwhile, Nigella Sativa we get from a local company in the form of soft capsules. Based on existing testimony for COVID-19 therapy, the dosage for...
adults, (HSN) 5 ml, 1 gram, and two soft capsules, respectively. This study makes 1 gram of Nigella sativa with 50 ml boiling water. Citizen Indonesia took this HSN three times a day.

To calculate the dose for the animal model, we do as follows, and we divided the HSN dosage by the number 5000 ml (human blood volume)/5 ml (mouse blood volume) to find the dose according to the mice. So, we found a Honey dose of 5/1000 ml = 0.005 ml, Saussurea coctus: 50/1000 ml = 0.05 ml, and Nigella sativa 2/1000 ml = 0.002 ml for each administration. Researchers gave HAS following the calculation of the oral dose every morning at 07.00 am. We gave HAS to the first group, while in the second group, we gave normal saline. The duration of administration is three weeks. How to check cellular immunity, we used to refer method in our previous study (8). We examined three types of cells, namely: NK cells, TH2 cells, and Th17 cells. We assessed the absolute counts of Th17, NK cell, and Th2 used flow cytometry, respectively, using the antihuman CD4 + IL-17APE antibodies (BioLegend, San Diego, CA, USA) and anti-human CD4 + CD25 + Foxp3-PE antibodies (BioLegend, San Diego, CA, USA) with standard method. Peripheral blood mononuclear cells was adjusted to the concentrations of 1 × 106 cells / L and incubated with various antibodies. We analyzed all the samples used BD Cell-Quest™ Pro software (BD Biosciences).

The method of checking for humoral immunity is also the same as referring to our previous method (8). In general, we convey the following: Enzyme-linked immunosorbent assay (ELISA) for measuring s-IgA, β-defensin, and IL-17.

RESULTS AND DISCUSSION

Our first study aimed to determine the cellular immunity profile when we supplemented the HAS as the instructions we wrote above. We investigated a cellular profile of immunity that included only Th2, Th17, and NK cells. We can see the results of the examination of cellular immunity in Fig 1.

![Fig 1: Representative flowcytometry Figs from control group Th2 (A1), group Th2 treatment (B1), from control group Th17 (A2), group Th17 treatment (B2), and from control group NK cell (A3), and group NK cells treatment (B3).](image)

The results of calculating the number of Th2, Th17, and NK cells can see in Table 1.
Table 1. The analysis of differences between the control group and the supplement group by reviewing the cellular responses of Th2, Th17, and NK cells.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MEAN ±SD</th>
<th>SIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.32 ± 0.04</td>
<td>0.000</td>
</tr>
<tr>
<td>Th2</td>
<td>1.22 ± 0.13</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.50 ± 0.12</td>
<td>0.000</td>
</tr>
<tr>
<td>Th17</td>
<td>3.54 ± 0.25</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>1.16 ± 0.05</td>
<td>0.229</td>
</tr>
<tr>
<td>NK cell</td>
<td>1.24 ± 0.15</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 showed statistically significant differences in Th2 and Th17 between the control and treatment groups with p = <0.05. But on NK cell examination results, although there were differences in numbers, it was not significant (p => 0.05). To explain the table 1 review, we continue the statistical analysis by displaying a graphic image shown in Fig 2.

In Table 1 and Fig 2, the study results show a significant difference between the control group and the treatment group. There was a difference in the number of Th17 between the control and treatment groups. The proliferation of Th17 will produce IL-17 and IL-22. These two ILs will stimulate the cylindrical epithelium of the intestinal lumen to produce β-defensin (9). While the expansion of Th2 will produce IL-4, and this IL-4 will stimulate virgin B cells to experience maturation to produce IgM. Upon IL-6 and TGF-β precursors, mature B cells switch to produce IgA dimer (10). Calculating the amount of humoral immune response, namely: TGF-β, IL-17A, slgA, IL-4, IL-4, B-def, IgG, can be seen in Table 2.
Table 2. Quantitative results of mice humoral immune response due to supplementation with HAS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MEAN ± SD</th>
<th>SIG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6.093 ± 0.417</td>
<td>0.000</td>
</tr>
<tr>
<td>TGF-β</td>
<td>6.210 ± 0.620</td>
<td>0.067</td>
</tr>
<tr>
<td>Control</td>
<td>8.225 ± 0.342</td>
<td>0.000</td>
</tr>
<tr>
<td>IL-17A</td>
<td>8.820 ± 0.520</td>
<td>0.000</td>
</tr>
<tr>
<td>Control</td>
<td>1.103 ± 0.395</td>
<td>0.000</td>
</tr>
<tr>
<td>sIgA</td>
<td>2.584 ± 0.359</td>
<td>0.000</td>
</tr>
<tr>
<td>Control</td>
<td>7.104 ± 0.817</td>
<td>0.002</td>
</tr>
<tr>
<td>IL-4</td>
<td>9.785 ± 1.027</td>
<td>0.001</td>
</tr>
<tr>
<td>Control</td>
<td>1.056 ± 0.056</td>
<td>0.001</td>
</tr>
<tr>
<td>β-def</td>
<td>1.364 ± 0.121</td>
<td>0.001</td>
</tr>
<tr>
<td>Control</td>
<td>2.728 ± 0.313</td>
<td>0.001</td>
</tr>
<tr>
<td>IgG</td>
<td>3.944 ± 0.417</td>
<td>0.001</td>
</tr>
</tbody>
</table>

To facilitate evaluation, study, and analysis table 2, we display the graphic image shown in Fig 3.

Fig 3. The examination results, TGF-β, IL-17A, sIgA, IL-4, IL-4, β-def, and IgG due to treatment HAS.

The second research objective in this study was to determine the humoral immune response due to supplementation. We measured TGF-β, IL-17A, sIgA, IL-4, IL-4, β-def, and IgG as manifestations of the humoral immune response. By evaluating the research results shown in Table 2 and Fig3 using statistical analysis to get a conclusion. We got results that almost match our hypothesis. The study showed a significant difference between the control group and the group giving HAS on all humoral immune response markers except for one, namely IL-17A (p = <0.05, for IL-17A p = 0.065 still > 0.05). Our result could be the case that there may be competition with IL-22, which also has a role as a trigger for β-defensin expression produced by mucosal epithelial cells (11,12). We regret not examining the IL-22 marker, which might answer why there were no differences between the control and treatment groups for the IL-17A marker. The β-defensin has a vital role in mucosal immunity by directly lysing microbes, including viruses. The β-defensin molecule’s shape has a positive charge, while the microbes have a negative wall charge (13,14). In addition to the direct killing of pathogenic microbes in the mucosa carried out by β-defensin, this killing can also be carried out indirectly by s-IgA. Specific s-IgA that is present in the mucosa will ozonate and bind to pathogenic microbes. This opsonin will be phagocytosed by dendritic cells, which will then be lysed by the phagolysosome’s substance (9). Therefore, β-defensin and s-IgA are critical substances to kill pathogenic microbes that will enter the human body. The research results that we see in Table 2 show that there are significant differences and correlations between the control group and the treatment group, each with p = <0.05. Therefore, the question arises whether Honey, Saussurea costus, and Nigella sativa can increase the response / immune modulator of the covid-19 vaccine, whether it is commercial or still in the development process, needs explanation.

NK cells in the tissues or blood can also kill microbes in these areas. But the ability of these NK cells must be supported by IgG, which can bind to NK cells. The IgG will capture if only microbes attached to specific cells in the body bind to NK cells via Fab of IgG. This event is known as ADCC (Antibody-Dependent Cellular Cytotoxicity) (15,9). We saw the study results in Fig 2 and show that the NK cells did not show any significant differences and correlations between the control group and the treatment.
Researchers were able to complete this work because we received financial assistance from PT Anak Bangsa Biotechnologi.

REFERENCES


2. CHSNg, D. et al. 2020. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside WuHan, China. JAMA.


6. The Holy Quran. Noor Foundation USA, Inc. QS an Nahl S. 16-69


CONFLICT OF INTEREST

There was no conflict of interest in this study.
release of cell internal viral proteins. Eur J Immunology. 23(7):1540-5.
20. Mahmoud. 2020, Saussurea costus may help treat COVID-19., Tropical Medicine and Gastroenterology Department, Sohag University Hospital, Faculty of Medicine, Egypt. Sohag University Sohag Medical Journal Faculty of Medicine.