
Sys Rev Pharm 2020;11(9):1067-1071
A multifaceted review journal in the field of pharmacy

1067 Systematic Reviews in Pharmacy Vol 11, Issue 9, Sept-Oct 2020

ImprovingWhite Box Testing Using Bi – Directional
Symbolic Analysis and Test Case Slicing

P. Velmurugan1, S. Ganesh Kumar2

1Assistant Professor / CSE, SRM Institute of Science and Technology, Chennai, India
2Associate Professor/ CSE, SRM Institute of Science and Technology, Chennai, India

ABSTRACT
Adequacy in programming testing comes when we have an arrangement or
deliberately approach in the testing area to cover high estimation of a source
code of any product by testing all its code successfully. For high scope and
high programming quality level we have to accomplish high branch scope
that is 90% scope must be finished by an analyzer then no one but, we could
ready to found that the testing has accomplished some picked up in
adequacy in programming testing territory. Essentially, a few strategies and
procedures had been looked into and connected, additionally got
achievement already on testing however the outcome was scored low in fact.
This high disadvantage in programming testing space raises request to
propose and build up a different strategy which can help in discovering
mistakes and testing each source code successfully.

Keywords: Programming Testing, Software Reliability, Software
Effectiveness, Test case cutting

Correspondence:
P. Velmurugan
Assistant Professor / CSE, SRM Institute of Science and Technology, Chennai,
India

INTRODUCTION
Throughout the most recent decades, the PC framework
has gone into people life in each region from home to
workplaces. Along these lines, as per the significance of
PCs in human life has made an engineer intense on its
execution, unwavering quality, and support of the PC
framework. For the great quality programming, the
framework ought to be powerful. To get the successful
framework we require great working of the source
program which is finished with the method called
programming testing. Compelling testing is an objective
to accomplish a decent nature of programming by
utilizing different blends of information sources sends to
the framework to discover infeasibility in the source code.
Successful testing is a mix of high scope score
measurements and superb level. Already numerous
strategies had been executed in programming testing
space however scope metric was low. The explanation for
was either because of the nearness of branches, circles or
complex program, or else because of absence of
experiments. The primary focal point of this examination
paper is to build branch scope and disregarding the
issues applicable to some code components can be
infeasible. Numerous techniques like emblematic and
console execution, seek based methodologies and
arbitrary experiment age had connected to expand the
scope rate however this outcome in low branch scope.
Viability in testing requires a connection between high
scope score and excellent level. For high scope and high
programming quality level we have to accomplish high
branch scope that is (90%) of scope on source code zone
required then just it will demonstrate the testing is
viable in testing area. We proposed a new technique
called Bi-directional symbolic analysis which helps to
cover the program by using external inputs and also
indicates the measurement score i.e. (80%) of coverage
will be done that leads developers to analyzed testing in
an effective way. The goal of the Bi-directional symbolic
analysis is to traverse every statement of source code

and find the area with its reachability condition which is
not been cover under testing. The bi-directional symbolic
analysis is a combination of forward analysis and
backward analysis. The goal of forward analysis, which is
in the form of symbolic execution to execute not-yet-
covered elements and backward analysis which are in
the form of symbolic reachability analysis is to identify
reachability condition and reveal unreachabilitystates.

PROBLEMSTATEMENTS
A. Existing problem
There is a problem of high coverage in source code
especially the uncovered area, branch coverage and
the presence of many infeasible ones that are not
executable in a testing domain with these issues it
impacting on the effectiveness of the coverage to
obtain with current approaches to get an exact metric
measurement. For example, in source code, some area
like a loop with the following statement have not been
executed by external input during testing and to make
it executable some method have been applied but
could not be able to reach.
B. Interested Problem

This paper tries to enhance test execution as takes
after:

 Try to cover code scope metric by
utilizing some characterized test
cases.

 Try to put forth infeasible expression
and a reveal zone to be coverwith
test cases.

 Try to cover incompletely
executableexplanation.

 Try to discover reachability
condition to uncover inaccessible
state

I. Overall Blockdiagram of a proposed technique



Improving White Box Testing Using Bi – Directional Symbolic Analysis and Test Case
Slicing

1068 Systematic Reviews in Pharmacy Vol 11, Issue 9, Sept-Oct 2020

Fig 1. Proposed Module for Effective testing using Bi – directional symbolic analysis and Test case slicing

The principle point of compelling testing utilizing bi-
directional emblematic investigation is to check each
program proclamation whether the announcement
is practical, infeasible, and revealed region of a
source code. Thus, that the scope metric score or
estimation can be accomplished. Bi-directional
representative investigation is a blend of emblematic
execution as emblematic examination to cover each
component in a source code whereas emblematic
reachability is to locate the reachable condition to

uncover inaccessible states.
Figure 1 portrays the general outline chart of
powerful testing. It comprises of two noteworthy
stages: representative execution, experiment cutting.
Crafted by representative execution is to navigate
each program articulation and furthermore crossed
infeasible components whereas crafted by
emblematic reachability are to locate the correct
condition or reachability condition to uncover
inaccessible region in a program.

A. Source Code

Fig 2. Source Code



Sys Rev Pharm 2020;11(10):1-6
A multifaceted review journal in the field of pharmacy

1069 Systematic Reviews in Pharmacy Vol 11, Issue 10, Oct-Nov
2020

In the figure 2 source code we do testing by giving
ten diverse experiments each having four
information variable like Test case T1 [2 3 4 1]
where variable a = 2, b =3, c = 4 and d = 1. We have
mark proclamation number on each source code to
show the announcement number with the goal that
it can help in distinguishing the specific source
code which is executable by specific experiment. In

the wake of checking with all the ten diverse
experiments on a source program we can be ready
to see the attainable part meant with "E" and
incomplete executable proclamation “P” and the
revealed explanation meant with "N". Following
figure demonstrate executable proclamation,
fractional articulation and non-executable
explanation by specific experiments.

Table 1: Statement Coverage by Particular Test Cases.

From table 1, we have selected few test cases on the
basis on highest ration in executable statement and
the selected test cases are T1, T4 & T5. We can find
that test case T1 the beginning tree statement are
fully executable whereas in test case T5 and T4 has
fully executable statement are statement 6,7,8,9 & 10

and partial executable statement are 5& 11
respectively. With test cases T2, T3 and T9 have some
statement is infeasible and uncovered statement. This
can be done by the techniques called Test Case slicing
method.

B. Control FlowGraph

Fig 3. Control Flow graph of Statement

SYMBOLICEXECUTIONS
The objective of representative execution is to
navigate every last explanation of a source program
and identify the attainable proclamation and an
infeasible articulation and a reveal zone in a source
program. In emblematic execution each code of a

c/c++ program is check by given outer info variable
and recognize which input variable a specific
articulation is run, and which proclamation is
demonstrating blunder. Like in current venture, there
are add up to thirteen articulation in a program and
each announcement is confirm by utilizing ten test



Improving White Box Testing Using Bi – Directional Symbolic Analysis and Test Case
Slicing

1070 Systematic Reviews in Pharmacy Vol 11, Issue 9, Sept-Oct 2020

suite and each test suite have four information
variable a, b, c and d. With some test suite some
announcement executes, and some territory gets
revealed and some are infeasible.

TEST CASE SLICING TECHNIQUES
In experiment cutting procedure, the entire program
can be partitioned into two classes: Feasible
proclamation and infeasible explanation or revealed

zone in a source code. Given coming up short single
declaration experiment coming about because of
emblematic execution, we cut these experiments by
expelling unimportant articulation from testing area
or methodology. The primary objective in experiment
cutting procedures is to discover the achieve capacity
condition to cover infeasible proclamation and
uncover inaccessible state in a program.

Table 2. Infeasible and Feasible Statements in a Source Code

From table 2, we assure that the condition are false
for infeasible statement and with the test case slicing
method we need to find the reachability condition to

execute infeasible statement and we can do by
interchanging the input variable to find the
reachability condition.

Table 3. Resultant Table after Test case slicing
II. REACHCOVERAGE
A. Test cases with similar ratio of test caseT2

Table 4. Test Cases with same ratio

Test cases of same ratio on the basis of
executable statement in a source code

T2, T6, T7, T8

Test Case T10 we need to find the reachability
condition or reachability inputs value to reach
uncover statement ci.e. statement number [13] and
for that we need to find the maximum and minimum
value of given four input variable on the basis of
given Conditional Statement in a source code to
reach statement number
[13] Conditional Statement in source code is:
Statement number [1], [3], [5], [7], [9], & [11]

(i) To discover greatest and least factor

To Reach Statement Number [13] - {(a>b), (a > c)}
{(a≠b), (b≠c)} {(c<d), (d>a)}
T7 = [10, 3, 9, 15] will reach to explanation number
[13] where all the contingent proclamation with
this specific information variable of a, b, c and d will
encourages us in covering articulation number [13].
With these new proposed strategies in testing space,
bi- directional representative examination covers or
achieves the scope metric score that is 90% scope
has come to in this venture. Bi-directional serves to
identify the possible component.

B. ALGORITHM
Inputs: inputs variable a, b, c & d of test suite Ti
Output: Executive uncovered area in a source
program P.

Step1: Inputs variable (a, b, c & d) of test cases Ti in a
source program “P” to find the feasible statement and
infeasible statement.
Step 2: P – Total statement in a program (S1-
S13 statement).
Step 3: Ti (a, b, c & d) to execute step by step (S1-S13)
to find feasible and infeasible part in a program P.
Step 4: For P – (S1- S13) if execution statement is
TRUE, return ‘PASSED’ as status of test case Tp.
Step 5: For P – (S1-S13) if not executed
statement is False, return ‘Failed ‘as status of
test case Tp.
Step 6: Shows the percentage of test cases with
status ‘PASSED’ with respect to Ti number of test
cases.
Step 7: Find reach ability condition by interchanging
inputs variable to execute uncovered area in a
source program P.

Result Analysis
In the wake of assessing with ten distinct instances of
information variable of "a", “b“,“c" and "d” in a program
we would ready to locate the possible proclamation and
infeasible articulation of a program code. Experiment
Slicing methods finds the condition or achieve capacity
state to cover those infeasible part by trading inputs
estimation of false condition to influence it in consistent
with cover to the infeasible part without affecting the
condition which are genuine at first for doable



Improving White Box Testing Using Bi – Directional Symbolic Analysis and Test Case
Slicing

1071 Systematic Reviews in Pharmacy Vol 11, Issue 9, Sept-Oct 2020

proclamation. At whatever point test cases has
executable articulation it return experiment "Go" as
status, else it will return "Bombed" as status, and in light
of the quantity of experiments that arrival "Go" as status

there is increment in level of experiments which are
effectively executed in a source code. The Graph appears
in figure 4, portrays the outcome investigation of this
examination paper.

Fig 4. Result Analysis graph showing increase in percentage of test cases successfully executed based on
number of test cases.

CONCLUSION & FUTUREWORK
Subsequent to assessing with ten distinct instances of info
variable of a,b, c and d in a program we would ready to
locate the achievable explanation and infeasible
proclamation of a program code. Experiment Slicing
systems finds the condition or achieve capacity state to
cover those infeasible part by exchanging inputs
estimation of false condition to influence it in consistent
with cover to the infeasible part without affecting the
condition which are genuine at first, for plausible
proclamation. Till now we have broken down each
announcement of a code by giving diverse ten cases and
found the doable and infeasible piece of a program code
and connected "Experiment cutting "strategies to achieve
infeasible proclamation. Subsequent to applying Test
Case Slicing on program code to cover the revealed
territory by specific experiments and after that we
discover most extreme most noteworthy incentive
between input variable a, b, c, and d to encourages us to
achieve the condition to cover articulation "S13" which
are not executable in all the ten experiments. Likewise
we would ready to state that the quantity of experiments
executed the announcement is TRUE return PASSED as
status generally will return FAILED as status, and there is
increment in level of experiments returning positive
outcome as for add up to number of experiments and the
same has been appeared in Figure 2. As a future work,
we will be further analyzing a similar positive work of
our undertaking on other dialect venture like java
venture, information structure venture. We will likewise
attempt to check for similarity of a similar technique for
our undertaking on other dialect venture utilizing
successful testing strategy with various situation, where
in we can spare the cost, time and ability in more expand.

REFERENCES

1. Sayogita Chaturvedi and Kulothungan, A., 2014.
Improving fault detection capability using
coverage-based analysis. IOSR Journal of
Computer Engineering, 2,pp.22–30.

2. Duggal, G. and Suri, B., Understanding Regression
Testing Techniques. 2008

3. Leon, D. and Podgurski, A., 2003. A Comparison
of Covergae- Based and Distributed-Based
Techniques for Filtering and Prioritizing Test
Cases. Proc. Int’l Symp. Software Reliability Eng.,
pp.442–453.

4. Smith, T.F., Waterman, M.S.: Identification
of Common Molecular Subsequences. J.
Mol. Biol. 147, 195--197(1981)

5. May, P., Ehrlich, H.C., Steinke, T.: ZIB Structure
Prediction

6. Pipeline: Composing a Complex Biological
Workflow through Web Services. In: Nagel, W.E.,
Walter, W.V., Lehner, W. (eds.) Euro-Par
2006.LNCS, vol. 4128, pp. 1148--1158. Springer,
Heidelberg(2006)

7. Foster, I., Kesselman, C.: The Grid: Blueprint for
a New Computing Infrastructure. Morgan
Kaufmann, San Francisco(1999)

8. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman,
C.: Grid Information Services for Distributed
Resource Sharing. In: 10th IEEE International
Symposium on High Performance Distributed
Computing, pp. 181--184. IEEE Press, New York
(2001)

9. P.Velmurugan and Pradnya Goel: Test Data
Generation for Improving the Effectiveness of
Test Case Selection Algorithm Using Test Case
Slicing, Journal of Computational and Theoretical
Nanoscience, Vol.16, Issue No:5/6, Pg.No:1848-
1853,2019.

10. Sumon Chatterjee, M.Mohan: Test Case
Prioritization for Regression Testing Based on
Fault Dependency and Fault Severity,
International Journal of Engineering Studies and
Technical Approach, Volume 2, Issue No:4,
Pg.No:199-206 April2016.

11. Anushree and M.Mohan: Efficient automatic test
case generation for data flow testing using
Neighborhood crossover method in genetic
algorithm, Asian Journal of Science and
Technology, Volume 6, Issue No:4, Pg.No:1354-
1658.


	P. Velmurugan1, S. Ganesh Kumar2
	P. Velmurugan

