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ABSTRACT 
The Model of infectious diseases continues to develop along with the 
development of the disease. With the dynamic spread of disease, 
ongoing research is needed. This study developed the SIR model by 
taking into account the spread of disease in the presence of 
Reproductive Number or R0. This study proposes an epidemic model 
of infectious diseases in dynamic networks for SIRS types, the 
standard mean-field model is used as a basic framework. 
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INTRODUCTION 
Indonesia as a developing country, health issues are still 

important to get serious attention. In particular, the problem 

of infectious diseases because in Indonesia alone infectious 

diseases that occur until the end of 2017 and are still a hot 

topic of discussion are diphtheria. Although it sounds like a 

common cold or fever, diphtheria in fact has a high mortality 

rate and can be transmitted quickly. Until now, the 

vaccination program is still believed to be the most effective 

way in suppressing the spread of diphtheria. One branch of 

modern mathematics which is important and has a wide 

scope of research areas is differential equations. 

Differential equations are branches of mathematics that are 

quite strategic because they relate to the central parts of 

Algebra, Analysis, Geometry, and others that will play a 

major role in the introduction of concepts and problem 

solving relating to the real world (Waluya, 2006).  

This study aims to build a model of the spread of infectious 

diseases in dynamic SIRS type networks for heterogeneous 

populations. The model will be built using the basic 

framework of a mathematical model to investigate a 

parameter known as a basic reproductive number in detail, 

especially if the basic assumption of the model, mixing 

homogeneous populations, does not apply. In the SIRS 

model, this parameter has a very important role as a 

notification of a disease outbreak. The model that will be 

investigated in this study is based on a standard mean-field 

model. The main parameters that serve as measures for 

controlling epidemics, known as basic reproductive numbers 

with the mean-field model, will be investigated in more detail 

in the context of developing the model. The mean-field 

modification model produced essentially contains implicitly 

some important effects of heterogeneous mixing in contact 

tissue in the epidemic for vaccine allocation. 

 

METHOD 

SI epidemic model 

The simplest mathematical model in epidemiology is known 

as the Ross Epidemic Model or SI, which was developed in 

1911. In the SI model, the population is divided into two parts 

(subgroups), namely susceptible = S populations against 

disease transmission and infectious populations = I) against 

a disease. The assumptions used in this model are: that the 

vulnerable population remains in close contact with the 

populations is constant as N with N = (S (t) + I (t)) where S 

and I are mutually exclusive and mixing the population 

homogeneously so that each individual has an equal chance 

of subgroup contact that results in a new infection the unity 

of time from the original state is susceptible (or also called the 

transmission rate constant). 

 

SIS epidemic model 

The assumptions used in this model are: that the vulnerable 

population remains in close contact with the infected 

populations is constant as N with N = (S (t) + I (t)) where S 

and I are mutually exclusive and homogeneous mixing of the 

population so that each individual has an equal chance of 

infection. However, the number or size of the infected 

population can decrease as the movement of infected 

individuals changes status to be susceptible to reuniting time 

 

 

SIR epidemic model 

The SIR model is the basis for most of the deterministic 

models that are still used today. This model was first 

developed by Kermack and McKendrik in 1927. The SIR 

model has the same structure and assumptions as the SI 

model, the extension is that in the SIR model it is possible for 

the infected population / community members to recover 

and the total population of N to be divided into three 

subgroups mutually exclusive; susceptible subgroups 

(Susceptibles) symbolized S (t), infectious / infected 

subgroups I (t) and moved (Removed) subgroups symbolized 

R (t). R (t) represents individuals who died of illness, 

recovered from infection and now have permanent immunity 

or individuals who have been exiled from the rest of the 

population. So in this last subgroup, it no longer contributes 

to the spread of disease / epidemic. However, it is still 

maintained as a member of a total population of N, although 

there is a possibility that some of them have died. 

In this model I also assume that individuals who enter R (t) 

cannot be re-

proportion of the condition of the infected individual 

subsequently is removed unity of time. Then the differential 

mailto:hamidahnst@unimed.ac.id
http://dx.doi.org/10.5530/srp.2019.2.04


Hamidah Nasution et al / Model of Spread of Infectious Diseases 

 

686                                                                           Systematic Review Pharmacy                         Vol 11, Issue 2, Mar  Apr, 2020 

equation model that represents the rate of change of the 

population that is susceptible to constant unity of time as in 

the SI model, as in equation (3). This is because there is no 

direct transfer of individuals from subgroups vulnerable to 

moving subgroups. However, the differential equation model 

of the infected subgroup needs to be modified to take into 

account the number of infected people and recover. 

 

RESULT 

Model Epidemi  SI 

The simplest mathematical model in epidemiology is known 

as the Ross'Epidemic Model or SI, which was developed in 

1911. In the SI model, the population is divided into two parts 

(subgroups), namely susceptible (S) populations to disease 

transmission and infected populations (infected) infectious = 

I) to a disease. In Figure 1 this model is the same as SIR but 

without the R compartment. 

The assumptions used in this model are: that the vulnerable 

population remains in close contact with the infected 

constant as N with N = (S (t) + I (t)) where S and I are 

mutually exclusive and mixing the population 

homogeneously so that each individual has an equal chance 

of infection. 

contact that results in a new infection the time unity from the 

original state that is vulnerable (or also called the 

transmission rate constant). Furthermore, by using the law of 

Mass action, the SI Model can be described as: 
𝑑 𝑆(𝑡)

𝑑𝑡
= − 𝛽𝑆(𝑡)𝐼(𝑡)     

   (1) and 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡)      

   (2) 

hereafter written:  
𝑑 𝑆 

𝑑𝑡
= − 𝛽𝑆 𝐼      

   (3) 
𝑑𝐼 

𝑑𝑡
= 𝛽𝑆 𝐼       

   (4) 

with initial conditions S(0) = S0   and I(0) = I0.  

In the SI model it can be said that the rate of change of 

contracting is positive, so the number of infected individuals 

will continue to increase until S (t) = 0. 

The completion of this SI model, by changing equation (4) to: 
𝑑𝐼

𝑑𝑡
= 𝛽(𝑁 − 𝐼)𝐼 

Furthermore, with the separation of variables and integrated 

with a limit from 0 to t as follows:      ∫
1

𝐼(𝑁−𝐼)
𝑑𝐼 = ∫ 𝛽𝑑𝑡

𝑡

0

𝐼(𝑡)

𝐼(0)
 

was obtained:   I(t) =  
𝐼(0)𝑁

𝐼(0)+ (𝑁−𝐼(0))𝑒−𝛽 𝑁𝑡
 

or written :  I(t)  = 
𝐼0𝑁

𝐼0+(𝑁−𝐼0)𝑒−𝛽𝑁𝑡
 

observe that I (t) increases with increasing t and for t→ ∞, 

𝑒−𝛽𝑁𝑡 → 0 

so that   I(t)  →
𝐼0𝑁

𝐼0
= 𝑁  

This last model states that as time goes by, the number of 

infected populations will increase, eventually all populations 

will become infected. 

 

 
Figure 1: Model SI with   and initial value S(0) =10, 

I(0) = 0,1 

 

Classic Model (SIR Model) 

The SIR model is the basis for most of the deterministic 

models that are still used today. This model was first 

developed by Kermack and McKendrik in 1927. The SIR 

model has the same structure and assumptions as the SI 

model, the extension is that in the SIR model it is possible for 

the infected population / community members to recover 

and the total population of N to be divided into three 

subgroups mutually exclusive; susceptible subgroups 

(Susceptibles) are symbolized S (t), infectious / infected 

subgroups are symbolized I (t) and recovered subgroups are 

symbolized R (t). R (t) represents individuals who died of 

illness, recovered from infection and now have permanent 

immunity or individuals who have been exiled from the rest 

of the population. So in this last subgroup, they no longer 

contribute to the spread of disease / epidemic. However, it is 

still maintained as a member of a total population of N even 

though there is a possibility that some of them have died. In 

this model it is also assumed that individuals who enter R (t) 

cannot be re-infect

proportion of the condition of the infected individual 

subsequently is removed unity of time. 

Then the differential equation model that represents the rate 

of change of the population that is susceptible to constant 

unity of time as in the SI model, as in equation (3). This is 

because there is no direct transfer of individuals from 

subgroups vulnerable to moving subgroups. However, the 

differential equation model of the infected subgroup needs to 

be modified to take into account the number of individuals 

infected and recovered. When the amount moved is 

proportional to the amount that is infected with each unit of 

time, then the differential equation model becomes: 

𝑑𝐼/𝑑𝑡 = 𝛽𝑆𝐼 − 𝛼𝐼 
While the rate of change in the number of removals per unit 

time is: 
𝑑𝑅

𝑑𝑡
= 𝛼𝐼 

with initial conditions: R (0) = R0, so that the complete 

differential equation model which is the SIR model is: 
𝐷𝑆

𝑑𝑡
= −𝛽𝑆𝐼 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛼𝐼       

     (5) 
𝑑𝑅

𝑑𝑡
= 𝛼𝐼 ,  

with initial conditions: S(0) = S0, I(0) = I0, R(0) = R0  dan S(t) 

+ I(t) + R(t) = N. 
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determined from the results of the analysis of the observed 

time "waiting time    and  
1

α
  = average period of 

contracting. 

 

 
Figure 2: SIR model with   S(0) 

=10, I(0) = 0,1  and R(0) = 0 

 

SIRS Model 

Not all diseases result in permanent immunity or death. Some 

diseases have a healing period and after time the recovered 

individual can be re-infected. Mathematically this means that 

a proportion of the subgroups that move the union of time 

(

meodel SIRS as follows: 
𝐷𝑆

𝑑𝑡
= −𝛽𝑆𝐼  + R 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛼𝐼      

     (6) 
𝑑𝑅

𝑑𝑡
= 𝛼𝐼 -  R 

 

with initial conditions: S(0) = S0, I(0) = I0, R(0) = R0  dan S(t) 

+ I(t) + R(t) = N. 

 

 
Figure 3: SIRS model with  = 0,2 

and initial value S(0) =10, I(0) = 0,1  and  R(0) = 0 

 

CONSTRUCTION R0 
Basic Reproduction Number (R0) 

R0 which is usually called the Basic Reproduction Number is 

the average number of secondary infections produced when 

an infected individual is entered into the host population 

where each individual is in a susceptible condition. In most 

deterministic models, an infection begins fully if and only if 

R0> 1, and otherwise if R0 <1 then the number of infections 

will decrease and eventually become extinct. So the basic 

reproduction number is often seen as a threshold quantity 

that determines when an infection can attack and survive in 

a new host population. 

If it is assumed that all pairs of individuals have contact at the 

same time so as to produce a new infected individual ie , 

The average rate of infected individuals has contact with 

susceptible individuals and then susceptible individuals 

 

R0 construction in the SIRS model, i.e.: 
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛼𝐼 

Growth of infection will take place if  SI     or   

S >   with  S(0) = N  so  (  Then thus R0 =  N/ 

 

Logistics Equations in Epidemiology 

Logistics equations are most often discussed when we study 

population dynamics with densities dependent on birth and 

death. 

 

CONCLUSION 
This study proposes an epidemic model of infectious diseases 

in dynamic networks for SIRS types, the standard mean-field 

model is used as a basic framework. In this SIRS epidemic 

model, a very basic parameter in discussing a disease 

epidemic is R0 (basic reproductive number). R0 has the main 

role as a threshold of an outbreak, on the relevance of testing 

control measures.  
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