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ABSTRACT 

The model of spread of infectious diseases is research that must be done 

continuously as the development of infectious diseases. Although medical 

measures can reduce the consequences of infectious diseases, preventing 

the spread of infectious diseases is the main action that must be taken. 

Vaccination is a method commonly used to control the spread of 

communicable diseases today. This study aims to develop an epidemic 

model that warts proposed by Kermark and Mc Kendrick in 1927 in the 

form of S, I and R. compartments. The method used was an experiment 

by adding V compartment which is a vaccination. The results show that 

the point remains disease free to become asymptotically stable when the 

number of basic reproduction is less than one which means that the 

disease will not spread in the population and eventually the disease will 

disappear from the population. Whereas the endemic point will be 

asymptotically stable when the number of basic reproduction is more than 

one which means that the disease Exists. This study can be concluded that 

based on the stability analysis shows that the vaccination process is 

entirely dependent on the basic reproduction rate. 
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LITERATURE REVIEW 
2.1 Several Epidemic Models 

An epidemic is a pestilence of a disease in a short time. A diseases 

is called endemic if the disease persists in a population. So the 

epidemic model is used for describe fast outbreaks that occur in 

a short amount of time, whereas endemic models are used to 

study disease over a longer period of time long, as long as there 

are additions that are vulnerable due to abnormalities or healing 

from immunity, while the spread of infectious diseases involves 

not only disease-related factors, for example infectious agents, 

modes of transmission, latent period, transmission period, 

vulnerability and endurance, but also a factor social, cultural, 

demographic, economic and geographic. 

 

2.1. a S I Model  

The simplest mathematical model in epidemiology is known as 

the Ross Epidemic Model or SI, which was developed in 1911. 

On SI model, the population is divided into two parts (subgroups) 

namely population susceptible (susceptible = S) to disease 

transmission and infected population (infectious = I) to a disease. 

The assumptions used in this model is: that vulnerable 

populations remain in close contact with the population infected 

all the time 0t  , the total population is constant at N  with 

( ( ) ( ))N S t I t  where S  and I  are mutually exclusive 

and mixing homogeneous population so that each individual has 

the same opportunity occurrence of infection. If 3> 0 is the 

average (proportion) constant of the subgroup contact that results 

in a new infection the time unity of the situation originally namely 

vulnerable (or also called the transmission rate constant). 

 

 

 

2.1 b. SIS Epidemic Model 

The assumptions used in this model are: that the population is 

vulnerable keep in close contact with the infected population all 

the time 0t  , the total population is constant as N  where 

( ( ) ( ))N S t I t   where S  and I are mutually exclusive 

and the population is mixed homogeneously so that each 

individuals have the same chance of infection. But the amount or 

the size of the infected population can decrease with migration 

Infected individuals change status to be vulnerable again to unity 

of time in proportion to a. Then the SIS model can be constructed 

as: 

dS
SI I

dt
dI

SI I
dt



 

  

  

 (2.1) 

with initial condition  
0

(0)S S  dan 
0

(0)I I  

 

2.1. c.SIR Epidemic Model 

The SIR model is the basis for most of the still deterministic 

models used to date. This model was first developed by Kermack 

and McKendrik in 1927. The SIR model has structure and 

assumptions the same as the SI model, the extension is that in the 

SIR model it is possible for infected populations / members of the 

community to recover as well the total population of N  is 

divided into three interrelated subgroups exclusive; vulnerable 

subgroups (Susceptibles) symbolized ( )S t , subgroups in 

infected / infected (symbolized) symbolized ( )I t  and moved 

subgroup (Removed) symbolized ( )R t .  
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( )R t Represents individuals who died of illness, recovering 

from infection and now have permanent immunity or individual 

who already exiled from the rest of the population. So in this last 

subgroup, no again contributing to the spread of disease / 

epidemic. But still maintained as a member of a total population 

ofN , although there is a possibility that some of them have died. 

In this model it is assumed also that individuals who enter ( )R t  

cannot be re-infected. Assuming that is a constant proportion of 

the state of the infected individual then it is removed per unit 

time. Then the differential equation model represents the level 

changes in populations that are vulnerable to a constant unity of 

time as in the SI model as in the equation above. This is because 

there is no direct transfer from individuals from subgroups 

vulnerable to moving subgroups. However, the differential 

equation model of the infected subgroup needs to be modified to 

take into account the number of individuals infected and 

recovered.  

So that the differential equation model the complete SIR model 

is: 

dS
SI

dt
dI

SI I
dt
dR

I
dt



 





 



 

 

2.1.d. Model SVIR and Continue Vaccination Strategy (CVS) 

Alexander et al. (2004) and Shim (2006) use a model SVIR to 

study the dynamics model of influenza (flu) disease by 

vaccination. All of the continuous models above assume that the 

individual gets immunity after being vaccinated and the time for 

the individual to get immunity or the time to complete the 

vaccination process is ignored. In fact as soon as a vulnerable 

individual starts the vaccination process, that individual will 

different from vulnerable individuals but vaccinated individuals 

must be distinguish it from individuals who recover because they 

have acquired immunity from it vaccinated or immune after 

recovering from the disease. 

Xianning et al. (2007) introduce a continuous vaccination 

strategy in the SVIR epidemic model. The continuous 

vaccination strategy in the SVIR model is mathematically is the 

addition of V  compartment to the SIR base model, where V  is 

new groups that are divided from group S and show the density 

of individual who has started the vaccination process. Individuals 

in V  need time to get the level of protection against disease 

during the vaccination process and will move to R  when getting 

immunity. 

 

2.2 Fixed Point 

For example, given a system of DE (differential equations) as 

follows 

( ), ! nx f x x E R  

The point x is called a fixed point or a critical point or also called 

an equilibrium point if ( ) 0f x  . (Tu 1994) 

 

2.3. Stable Fixed Points 

Suppose x  is a fixed point at system of DE and ( )x t  is a 

solution with an initial value (0)x xo withxo x . Point 

x  is said to remain stable, if for each 0e  , there is 0r  , 

such that | |xo x r  , then the solution ( )x t x  meet 

| ( ) |x t x e  for each 0t  (Vershulst 1990) 

 

2.4. Local Asymptotic Stable Fixed Point 

Point x  is said to be asymptotically stable if point x  is stable 

and is present 0e  such that | | | |x xo e  then lim 

( )x t x , where (0)xo x . 

(Szidarovzky & Bahill 1998) 

 

2.5 Eigen Value and Eigen Vector 

Let A  be a matrix n n , a nonzero vector x  in Rn  is called 

eigenvector of A , if a scalar A  called the eigenvalue of A  

applies:  

Ax Ax   
The vector x  is called the eigenvector which corresponds to the 

eigenvalue A  which is of size n n , so the equation 

Ax Ax  can be written as follows:  

( ) 0A AI x    

where I is the identity matrix. The equation Ax Ax  has a 

solution zero if and only if det ( ) 0A XI   is called the 

equation characteristics. (Anton 1995) 

 

2.6 Fixed Point Stability Analysis 

Stability analysis for each fixed point is different for each 

eigenvalue, namely: 

1. The system x Ax  is stable if and only if each 

eigenvalue of A  the real part is negative. 

2. System x Ax  is unstable if and only if at least one 

value the eigenvalue of A  in the real part is positive.  

(Borrelli & Coleman 1998) 

 

2.7 Routh Hurwitz Condition 

For example 
1 2 3
, , , ,

k
a aa a  real numbers, 0

j
a   if j k

. All eigenvalues of the characteristic equation 

1
( 1)( ) ( 2) 0

k x k
a X k ax X Xp a       has 

a negative real part if the determinant of the 
j

H matrix is 

positive. Furthermore, Hurwitz Hj's matrix is defined as follows 

1

3 2 1

5 4 3 2

2 1 2 2 2 3 2 4

1 0 0 0

1 0

0
j

j j j j j

H

a

a a a

a a a a

a a a a a
   

 
 

 
 
 

 
 
 

 

 

all eigenvalues of the characteristic equation have a real part 

which is negative (fixed point x  stable) if and only if the 

determinants of all matrices Positive Hurwitz, namely: 0
j

H 

, for 1, 2 ,,j k   so according to conditions Routh-Hurwitz 

for a k , 2, 3, 4k   states that the point remains x  stable if 

and only if (for 2, 3, 4k  ),  

1. 
1 2

2, 0, 0k a a    

2. 
1 3 1 2 3

3, 0, 0,k a a aa a     
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3. 
1 3 4 1 2 3 1 4

,, 0 0, 0,4k a a a a a a aa       

Edelstein-Keshet 1998 

 

2.8 Basic Reproductive Number (R0) 

Basic Reproductive Numbers (R0) is the average number of 

vulnerable individuals infected directly by another infected 

individual if the infected individual enters the population that is 

still entirely susceptible. 

The conditions that will arise are one of the following 

possibilities: 

1. If 
0

1R  , then the disease will disappear. 

2. If 
0

1R  , then the disease will persist (endemic). 

3. If 
0

1R  , then the disease will increase to an outbreak. 

(Blyuss & Kyrychko 2005) 

 

 

METHODOLOGY 
3.1. Research Methods 

Methods used in this study as follows: 

1. Determine the assumptions and define the parameters used 

in SIR model assuming vaccination. 

2. Draw a transfer diagram to form a mathematical model. In-

transfer functions to form a system of differential 

equations.  

3. Complete the system of differential equations. 

4. Finding the equilibrium point of the model. The 

equilibrium point to be searched is disease-free equilibrium 

point and disease endemic equilibrium point.  

5.  Analyzing the stability of the equilibrium point.  

6. Interpreting the results obtained to determine the number of 

individuals who must be vaccinated so that there is no 

endemic disease  

7. Simulate the model by defining parameter values and 

illustrating it using MATLAB software. 

This section briefly presents the topology of the disease infection 

model which is based on the transmission route on SIR which will 

be developed later with the addition of compartment V. 

Transmission route of disease infection can be described in the 

form of a compartment pattern as shown in the following: 

 

 

RESULT 

4.1 Basic Reproductive Numbers (
0

R ) 

R0 construction in SIRS compartment model with closed 

population, that is: 

dI
SI I

dt
     

Growth of infection will occur if 0SI I    or I S     

with (0)S N , then / 1N   . Then 
0

/R N a   

 

4.2 Social Network 

The development of a probability networking model is work 

prove and parameterize complicated systematics in the structure 

of the network Therefore, it starts with several notations and 

some related definitions. The main basic concept in talks about 

social networks is graph and directed graph. The following 

descriptions are based on Wasserman and Faust (1994) and 

Bollobas (1998). 

 

 

 

4.3 Model of Infectious Diseases 

Xianning et al. (2007) introduce a continuous vaccination 

strategy in SVIR epidemic model. The continuous vaccination 

strategy in the SVIR model mathematically is the addition of 

compartment V  to the basic SIR model, where V  is a new 

group that is divided from group S  and shows to- and 

individuals who have started the vaccination process. Individuals 

in V  require time to get the level of protection against disease 

during the vaccination process and will move to R  when getting 

immunity. Therefore, based on the SIR model compartment 

transfer diagram it can be illustrated compartment model transfer 

diagram as follows assuming:  

1. α is the rate at which vulnerable individuals are moved into 

the process vaccination. 

2. 7i is the average rate (1 / YI is the average time) for 

individuals who are undergoing a vaccination process to 

obtain immunity 

3. Before gaining immunity, individuals still have 

possibilities infected with a transmission rate of 3n 

Assumed 31 is smaller than because individuals who get 

vaccinated may have immunity partial during the 

vaccination process. 

 

 

 

 

 

 

 

 

 

 

4.5. Determination of Fixed Point 

The assumptions above can be written in the form of the 

following differential equation: 

1 1

1 1 1

1

dS
S SI S

dt
dV

S V I V V
dt
dI

SI V I
dt
dR

V I R
dt

   

   

   

  

   

   

   

  

 

 

 

4.6. Stability Analysis 

Fixed point analysis on the system of differential equations is 

often used to determine a solution that does not change with time 

(constant solution). The fixed point of the differential equation 

above will be obtained by specify | 0, 0d dV  . 0dt   

And 0dR  dR = 0. Because the equationdS , dV , ddt is not 

depending on the dR dR equation, it can be reduced to: 

1 1

1 1 1

dS
S SI S

dt
dV

S V I V V
dt
dI

SI V I
dt

   

   

   

   

   

   

 

So we will get 
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1 1

1

0

0

0

dS
S SI S

dt
dV

S S V I V V
dt
dI

SI V I I
dt

I

   

    

   

    

     

   

 

By completing simultaneously, two points will be obtained fixed 

ie disease-free fixed point and endemic fixed point 

1. The point remains disease free 

0 0 0 0

1

( , , ) , , 0S V IE
 

     

 
        

 

2. Fixed point Endemic 

1 1 1 1

,
S

S V
I I I I

 

           



 

   

  
       

 

And I


 is the positive root of
2

1 2 3
( )g AI A I A I    

with : 

1 1

2 1 1 1

3 1 1 1

( )

( )( ) ( )

( )( )( ) ( )

A

A

A

  

        

          

 

     

      

 

 

4.7. Stability of Endemic Fixed Point 

Let the differential equation is denoted as follows 

1 1

1

( , ,

( , ,

)

( , , )

) S SI S

g S V I S VI V V

h S V I SI V I I

f S V I    

   

   

  

   

   



 

 

By linearized the equations above we will get the Jacobi matrix 

as follows: 

1 1 1

1 1

( , , )

0

f f f

S V I
g g g

J S V I
S V I
h h h

S V I

I S

I V

I I S V

   

    

     

 
 
 

  

  
  

  
  

  

 

 
 
 
 
 

  
 

   
 









 

 

 

4.8 Transmition Model at Dynamic Network 

Linearized at a fixed point E   will produce the Jacobi matrix 

as the following: 

1 1

1 1

1

1

0

0

0

I S

I V

I I S V

S
S

S
V

V

J

I I

E

   

    

     





 

 

 

  

   











 

  
 

   
 
 
 
 
 
 

  


 

 

  







 







 

 

 

4.8.3 Mean-Field Modification Model 

Suppose a SIR model in the presence of vaccination. In this 

model the birth rate B  and the death rate p  are included. 

Suppose there are 2 types vaccination 
1

v  of vaccinated babies 

and 
2

v  vaccination rates of individuals who are susceptible 

(susceptible). It is also assumed that protection against infection 

is not lifetime. Recovered individuals can be vulnerable again at 

the rate of 
1

q  someone vaccinated at 
2

q . 

The compartment model can be scheduled as a schedule as 

follows: 

 

2 1 2

1

2 2

(1 )
dS

V I SI V S q R qV pS
dt
dI

SI I pI
dt
dR

I q R pR
dt
dv

V I V S qV pV
dt

 

 





      

  

  

   

 

  = infection rate 

  = the rate of recovery from infection  

   p = death rate 

  =  birth rate 

 
1

V = percentage of vaccinated babies 

 
2

V = the rate of vaccination of vulnerable individuals 

 
1

q = conversion rate from cured 

 
2

q = the conversion rate from vaccinated becomes vulnerable
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CONCLUSION 
Vaccination strategy mathematical models obtained two fixed 

points, namely the point remains disease free and the point 

remains endemic. From the stability analysis, the dynamics of the 

Vaccination Strategy are entirely dependent on reproduction 

numbers basic. When the basic reproduction number is less than 

one, the fixed point disease free will be asymptotically stable 

which means that the disease will not spread in the population or 

eventually the disease will disappear from the population. If the 

basic reproduction number is more than one, the dot remains 

endemic will be asymptotically stable which means that the 

disease will persist and spread in the population. 
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