Parenteral Nutrition Preparation Procedure: A Hazard Analysis and Critical Control Points Approach at a Pediatric Hospital in Vietnam

Hoang Thuy Linh¹, Trinh Xuan Tung², Trinh Huu Tung³, Vo Quoc Bao³, Le Thi Minh Hong³, Pham Ngoc Thach³, Nguyen Minh Ngoc³, Luu Thanh Binh³, Phan Trong Lan¹, Hoang Quoc Cuong¹, Nguyen Duc Hai¹, Nguyen Duy Long⁴, Nguyen Thi Thu Phuong¹, Van Thi Thuy Linh³, Pham Thi Mai Anh³, Nguyen Thien Hai⁵, Le Quan Nghiem⁵, Nguyen Duc Tuan^{5,*}

¹ Pasteur Institute Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam.

² General Department of Preventive Medicine, Ministry of Health, Hanoi 100000, Vietnam.

³ Children Hospital No.2, Ho Chi Minh City 700000, Vietnam.

⁴ Ho Chi Minh City University of Technology, Ho Chi Minh City 700000, Vietnam.

⁵ University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam.

Article History:	Submitted: 21.10.2019	Revised: 10.01.2020	Accepted: 12.01.2020
ABSTRACT Background: Hazard analysis food safety assurance, but t in Vietnam has been under governmental guidelines. T determine the critical control preparation procedures in a p Methods: A cross-sectional s in Ho Chi Minh City, Vietna subjects were eleven standa product called Vaminolact 6 probability of occurrence, th	and critical control points (HACCP) is a tool for ne application of HACCP in healthcare facilities rstudied and underregulated given a lack of nis study aimed to explore the hazards and I points related to the parenteral nutrition (PN) bediatric hospital in Vietnam. tudy was conducted at Children Hospital No. 2 m, from July to September 2019. The study rd operating procedures for preparation of a PN 5%. The hazards were explored based on the a severity of consequence, and the quantity of	air flow control, and primary filter syst determined as follows: sterilization by vials, basal solution measurement, c every 10 vials, syringe change per ev filter system, and sterilization check-up Conclusion: The hospital manager sho an evidence-based adjustment to impr Keywords: contamination, HACCP, p Vietnam Correspondence: Nguyen Duc Tuan (PhD.)	tem. Nine critical control points were y alcohol, glove change per every 10 compounding, mini-spike change pe ery 10 vials, air flow control, primary b. uld consider this study as support fo rove PN preparation procedure. barenteral nutrition, pediatrics, safety
influenced individuals. Each	step in the PN procedure was determined by	University of Medicine and Pharmacy a	at Ho Chi Minh City, Ho Chi Minh
higher than 18 was consider determined by following the	ed a hazard. The critical control point (CCP) was five-guestion decision tree.	Address: 217 Hong Bang Street, Di Vietnam.	strict 5, Ho Chi Minh City 700000
Descrites Fischet la seconda success			

Results: Eight hazards were explored via hazard analysis, including sanitation prior to compounding, measurement of basal solution, compounding, labeling, sanitation of preparation room, in-out control,

INTRODUCTION

Parenteral nutrition (PN) is the intravenous administration of nutrition, which may include proteins, carbohydrates, lipids, minerals, electrolytes, vitamins, and other trace elements.¹ PN is widely used in healthcare settings to deliver critical nutrients to patients who are unable to tolerate enteral feeding.² Due to the requirements of careful titration and a combination of multiple components, PN has been considered to be one of the most complicated pharmaceutical products within the healthcare sectors.^{3,4}

As it is crucial to prepare PN in a sterile environment, most of the healthcare facilities in Vietnam purchase manufactured, premixed formulation of PN. Using PN on pediatric patients is complex given that children's nutrition needs from differ adults' needs, children have small vein diameters, and they under-absorb nutrients.⁵ Some pediatric hospitals maintain their PN preparation procedure for special adjustment.

Hazard analysis and critical control points (HACCP) is a systematic preventive approach to food safety from biological, chemical, and physical hazards in production processes.⁶ The HACCP was first suggested for widespread use at the Conference of Food Protection in the United State in 1971.7 The Codex Alimentarius Commission recommended the application of HACCP in combination with the maintenance of good manufacturing practices (GMP) to ensure food safety and hygiene. HACCP is introduced in the standard coded 5603:2008 of Vietnam National Standard, which is similar to the standard coded CAC/RCP 1-1969, Rev.4-2003 of Codex.8

Email: ductuan@ump.edu.vn DOI: 10.5530/srp.2020.1.21

© Advanced Scientific Research. All rights reserved

In its early stages, HACCP was applied to control quality and safety in the food manufacturing industry. Recently, the seven principles of HACCP have been applied in other fields,9 including the pharmaceutical industry. Prior to the application of HACPP, GMP was considered to be the only tool for quality assurance. HACCP can be applied in the pharmaceutical manufacturing process to explore, assess, and control the hazards that influence drug safety, focusing on prevention rather than addressing incidents of the effects of hazards.10

Hospital management's support and commitment to HACCP application is vital. A PN safety management system based on HACCP principles in a hospital provides a method of achieving active managerial control of multiple risk factors, contributes to consistency in PN preparation, and enhances employee awareness and participation in safety procedures.¹¹ The application of HACCP in healthcare facilities in Vietnam has been under-considered due to the lack of governmental guidelines. This study aimed to explore the hazards and determine the critical control points related to the PN preparation procedures in a pediatric hospital in Vietnam.

METHODS

Study design and study site

This was a cross-sectional study conducted at Children Hospital No. 2 in Ho Chi Minh City, Vietnam, from July to September 2019. This is one of the three largest healthcare facilities specializing in pediatrics in southern Vietnam.

Materials

The study subjects were 11 SOPs for PN preparation, including the following: i) designation of preparation room, ii) sanitation of preparation room, iii) preparation of ingredients and medical supplies, iv) monitoring the ultraviolet light, v) setting formulation and labeling, vi) preparation prior to compounding, vii) compounding, viii) unqualified product storage and demolition, ix) distribution, x) biological contamination control, and xi) sanitation of clothes and recycling equipment. These SOPs had been established for years and been adjusted several times, but not been assessed systemically yet.

The PN product called Vaminolact 6.5% was set for analysis. This is the most complicated PN product compounded in the hospital. The product contained 19 vital amino acids, supplying 240 kcal per liter.

Data analysis

The hazards were explored based on three standards: the probability of occurrence,¹² the severity of consequence,¹³ and the quantity of influenced individuals.¹⁴

For each standard, there were three levels of assessment, rated from one to three (Table 1). Each step of PN procedure was rated by multiplying the points of three standards. The cut-off point was 18-that is, each step with a point total equal to or higher than 18 was considered to be a hazard.

The critical control point (CCP) was determined by following the decision tree as shown in Figure 2. There were five questions, with dichotomous choices for each one.¹⁵

Ethical consideration

This study protocol was approved by the Ethical Council of Children Hospital No. 2. There were no experiments or interventions on animals or humans.

RESULTS

Eight hazards were explored through hazard analysis, including sanitation prior to compounding, measuring basal solution, compounding, labeling, sanitation of preparation room, in-out control, air flow control, and primary filter system.

Nine critical control points were determined as follows: sterilization by alcohol, glove change per every 10 vials, basal solution measurement, compounding, mini-spike change per every 10 vials, syringe change per every 10 vials, air flow control, primary filter system, sterilization check-up.

1 able 1. Hazard determination standard						
Standard	Low	Intermediate	High			
Probability of	≤3 aseptic units to	≤4 aseptic units to	Unqualified ingredient and/or equipment			
occurrence	compound the final PN	compound the final PN	Septic, aquatic product, storage ≥ 6 hours prior			
	≤2 aspirations for each unit	Simple technique	to final sterilization			
	Simple technique	Time consuming	Wrong clothes and/or gloves			
	Individual usage	Mass usage				
Severity of consequence	Likely to have little or no	Likely to lead to an increase	Likely to lead to permanent reduction in			
	effect on the patient	in level of care, e.g., review,	bodily functioning leading to, e.g., increased			
		investigations, or referral to	length of stay; surgical intervention			
		another clinician	Likely to lead to a major permanent loss of			
			function			
			Likely to lead to death			
Quantity of influenced individuals	<1/1000	1/1000 to <1/100	≥1/100			

Table 1. Hazard determination standard

Figure 2. Decision tree for CCP determination

			Poi	nt		
Process step	Risk	Probability of occurrence	Severity of consequence	Quantity of influenced individuals	Total points	Is a hazard?
BEFORE COMPOUNDIN	IG					
Prescription receipt	Wrong prescription leading to wrong ingredient preparation	1	3	3	9	No
Formulation	Wrong information leading to wrong ingredient preparation	1	3	3	9	No
Preparation of ingredients and medical supplies	NA	1	1	1	1	No
Sanitation prior to compounding	Biological contamination	3	3	3	27	Yes
COMPOUNDING						
Measuring basal solution	Biological contamination	3	3	3	27	Yes
Compounding	Biological contamination	3	3	3	27	Yes
PN products	Incompatibility	2	3	2	12	No
Labeling	Wrong label	2	3	3	18	Yes
Packaging	NA	1	1	3	3	No
AFTER COMPOUNDING	3					
Distribution	Wrong destination department	1	1	1	3	No
INFLUENT FACTORS						
Sanitation of preparation room	Biological, medical, physical contamination	3	3	3	27	Yes
In-out control	Biological, medical, physical contamination	3	2	3	18	Yes

Table 2. Hazard determination of the	parenteral	l nutrition	preparation
--------------------------------------	------------	-------------	-------------

Air flow control	Biological, medical, physical contamination	3	3	3	27	Yes
Primary filter system	Biological, medical, physical contamination	3	3	3	27	Yes

	Table 3. Criti	cal control p	oints determ	ination			
Process step	Hazard	Question 1	Question 2	Question 3	Question 4	Question 5	Is a CCP?
Sanitation of preparation room	Biological contamination	Yes	Yes	No	No	-	No
Sterilization by nebulizer	NA	Yes	Yes	No	No	-	No
Sanitation of floor	NA	Yes	Yes	No	No	-	No
Sanitation of supplies and equipment	NA	Yes	Yes	No	No	-	No
Ingredient preparation	Inadequate	Yes	Yes	Yes	No	-	No
Supplies preparation	Inadequate	Yes	Yes	Yes	No	-	No
Formula preparation	Wrong information	Yes	Yes	Yes	No	-	No
Sterilization by alcohol	NA	Yes	Yes	Yes	Yes	No	Yes
Ultraviolet light turning on	Unqualified light	Yes	Yes	Yes	No	-	No
Special clothes change	NA	No	-	-	-	-	No
Hand washing	NA	No	-	-	-	-	No
Aseptic clothes change	NA	No	-	-	-	-	No
Hand washing prior surgery	NA	No	-	-	-	-	No
Clouting	NA	No	-	-	-	-	No
Wearing gloves	NA	No	-	-	-	-	No
Glove change per every 10 vials	Biological contamination	Yes	Yes	No	Yes	No	Yes
Basal solution measurement	Biological, chemical, physical contamination	Yes	Yes	No	Yes	No	Yes
Compounding	Biological, chemical, physical contamination	Yes	Yes	No	Yes	No	Yes
Mini-spike change per every 10 vials	Biological, chemical, physical contamination	Yes	Yes	No	Yes	No	Yes
Syringe change per every 10 vials	Biological, chemical, physical contamination	Yes	Yes	No	Yes	No	Yes
Final PN product	Incompatibility	Yes	Yes	No	No	-	No
Storage	NA	No	-	-	-	-	No
Distribution	Wrong destination department	No	-	-	-	-	No
Air flow control	Biological, medical, physical contamination	Yes	Yes	No	Yes	No	Yes
Primary filter system	Biological, medical, physical contamination	Yes	Yes	No	Yes	No	Yes
Sterilization check-up	Biological contamination	Yes	Yes	Yes	Yes	No	Yes

DISCUSSION

This is the first study in Vietnam that has applied HACCP to assess safety in PN preparation for pediatric patients. We explored eight hazards and nine critical control points that should be studied more closely to improve procedures.

Incidents due to the incorrect formulation of PN products may influence to 2-3/70 people in worldwide per day.¹⁶ Case reports have shown that errors in prescription receipts can result in patient deaths.^{17,18} Wrong formulation due to information could also potentially lead to comorbidity, economic burden, and mortality.¹⁹ Incorrect labeling on final PN products has been reported to be one of the most common mistakes in laboratories, impacting 1-2/70 patients per day,¹⁶ leading to medication error and influencing patients' health, knowledge, and pharmaceutical compliance.¹⁹

Physical and medical contamination easily occurred in severe patients with PN,^{20,21} influencing approximately 1/260 patients

per day. ¹⁶ This may pose negative effects on the sustainability of the products,^{22,23} and patients' health.²⁴ Shortcoming on packaging as well as distribution to destination department has not been reported yet, but it is estimated to impact 2/70 people per day when errors occur.¹⁹

As shown in Tables 2 and 3, most of the hazards and critical control points are related to biological contamination. After checking the SOPs of PN preparation procedures, we found that the SOP for "unqualified product storage and demolition" was inappropriate. The SOP for "biological contamination control" was similar to the standards of United States Pharmacopeia (USP) and those of the National Association of Pharmacy Regulatory Authorities (NAPRA) in Canada. Therefore, it is acceptable to continue using this SOPs, but to specify each step.

At present, the PN preparation procedure requires a change of gloves, mini-spikes, and syringes every 10 vials. However, we

suggest given evidence-based appraisal that the frequency of change should be adjusted if appropriate. Document storage is one of the most important parts of HACCP. We recommend replacing the paper-based database with an electronic-based database, which requires less space and time to operate, in order to eliminate errors or lack of information.²⁵

According to the World Health Organization, monitoring is the scheduled measurement or observation of a CCP relative to its critical limits. Monitoring should be recorded. The monitoring procedures used must be able to detect loss of control at the CCP, and this information should ideally be available in time to make adjustments to ensure control of the process and prevent violations of the critical limits. Data derived from monitoring must be evaluated by a designated person with the knowledge and authority to carry out corrective actions when indicated. The personnel conducting the monitoring of CCPs and control measures should be engaged in production (e.g., line supervisors and maintenance staff), and, where appropriate, staff from quality control department. The personnel should be trained in monitoring procedures. Statistically designed data collection or sampling systems should then be used. All records and documents associated with monitoring CCPs should be signed and dated by the person carrying out the monitoring and by a responsible reviewing official.

CONCLUSION

HACCP is a useful tool to ensure the quality and safety of parenteral nutrition compounding at pediatric hospitals. The hospital manager should consider this study for an evidencebased adjustment to improve preparation procedure.

ACKNOWLEDGMENTS

We acknowledge the Ethical Council of Pediatric Hospital No. 2 at Ho Chi Minh City, Vietnam, for their approval. We would like to thank the Director Board of the hospital for their kind support.

CONFLICT OF INTEREST

The authors have no conflicts of interests to declare.

FUNDING: None.

REFERENCES

- 1. American Society for Parenteral and Enteral Nutrition (ASPEN). What is parenteral nutrition. 2017 [cited 2019 June 30]; Available from: http://www.nutritioncare.org/about_clinical_nutrition/ what_is_parenteral_nutrition/
- 2. Gupta N, et al. Outbreak of serratia marcescens bloodstream infections in patients receiving parenteral nutrition prepared by a compounding pharmacy. Clinical Infectious Diseases. 2014; 59(1): 1–8.
- 3. DeLegge MH. Parenteral nutrition therapy over the next 5–10 years: where are we heading? Journal of Parenteral and Enteral Nutrition. 2012; 36: 56S–61S.
- Driscoll DF. Compounding TPN admixtures: then and now. Journal of Parenteral and Enteral Nutrition. 2003; 27(6): 433–438.
- 5. Robert W, Jeffrey H. Pediatric gastrointestinal and liver disease. 4th ed. Elsevier; 2011. 1104.

- 6. Richards J, Parr E, Riseborough P. Hospital food hygiene: the application of hazard analysis critical control points to conventional hospital catering. Journal of Hospital Infection. 1993; 24(4): 273–282.
- Bauman HE. The HACCP concept and microbiological hazard categories. Food Technology. 1974; 28(1): 30–34.
- 8. The World Health Organization (WHO) Codex Committee on Food Hygiene. Guidelines for the application of the hazard analysis critical control point (HACCP) system, in training considerations for the application of the HACCP system to food processing and manufacturing, WHO/FNU/FOS/93.3 II. 1993.
- The World Health Organization (WHO). Annex 7: application of hazard analysis and critical control point (HACCP) methodology to pharmaceuticals. WHO Technical Report Series. 2013; 908.
- 10. The World Health Organization (WHO). WHO expert committee on specifications for pharmaceutical preparations. WHO Technical Report Series. 2012; 964.
- 11. Grintzali GP, Babatsikou F. The significance of the application of hazard analysis critical control point system in hospital catering. Health Science Journal. 2010; 4(2): 84.
- 12. Hai NT, Tuyet TT. Investigation of conditions for preparation and evaluation of some prescribed parenteral nutritions at Pediatric's Hospital 2. Unpublished data. 2019.
- Westbrook JI, et al. Errors in the administration of intravenous medications in hospital and the role of correct procedures and nurse experience. BMJ Qual Saf. 2011; 20(12): 1027–1034.
- 14. The World Health Organization (WHO). Definition. [cited 2019 Sept 8]. Available from: https://www.who.int/medicines/areas/quality_safety/sa fety_efficacy/trainingcourses/definitions.pdf
- Ram's Assorted Cold Storage Limited (RACSL). Hazard analysis of critical control point. RACSL MANUAL- III. 2016; 5.
- Baxter International Inc. IV compounding error statistics. 2008 [cited 2019 Sept 8]. Available from: http://baxtermedicationdeliveryproducts.com/pdf/dose edge_creating_awareness_sell_sheet.pdf
- 17. Institute for Safe Medication Practices Canada (ISMP Canada). Death due to pharmacy compounding error reinforces need for safety focus. ISMP Canada Safety Bulletin. 2017; 17(5).
- Institute for Safe Medication Practices Canada (ISMP Canada). Death associated with an IV compounding error and management of care in a naturopathic centre. ISMP Canada Safety Bulletin. 2018; 18(1).
- 19. Jeetu G, Girish T. Prescription drug labeling medication errors: a big deal for pharmacists. Journal of Young Pharmacists. 2010; 2(1): 107–111.
- 20. Bouchoud L, et al. Compatibility of intravenous medications with parenteral nutrition: in vitro evaluation. Journal of Parenteral and Enteral Nutrition. 2013; 37(3): 416–424.
- 21. Miranda TMM, Ferraresi AdA. Compatibility: drugs and parenteral nutrition. Einstein (São Paulo). 2016; 14(1): 52–55.
- 22. Bak A, et al. Physicochemical and formulation developability assessment for therapeutic peptide

delivery—a primer. The AAPS Journal. 2015; 17(1): 144–155.

- 23. Hartman C, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: complications. Clinical Nutrition. 2018; 37(6): 2418–2429.
- 24. John B, et al. Mixing medicines: how to ensure patient safety. The Pharmaceutical Journal. 2015; 294(7859): 453–456.
- 25. Crews J, et al. Total parenteral nutrition standardization and electronic ordering to reduce errors: a quality improvement initiative. Pediatric Quality & Safety. 2018; 3(4): e093.