Photodynamic Therapy as Adjunctive Treatment of Chronic Periodontitis: A Systematic Review

Oktawati S1*, Rukmana A2, Patimah2, Wahab RF2, Syafar IF2, Wahab W2
1Periodontology Department, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
2Periodontology Specialist Education Program, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
*E-mail of corresponding authors: perionhus_sri@yahoo.com

ABSTRACT
Background: In the case of chronic periodontitis, conventional mechanical debridement action cannot always eliminate bacteria and toxins in the periodontal pocket. This also can be obtained with additional therapy.
Objective: The aim of this study was to assess the effectiveness of photodynamic therapy (PDT) as adjunctive to scaling and root planing therapy (SRP) in the nonsurgical treatment of chronic periodontitis.
Material and Methods: A systematic search in PubMed, Wiley, and Cochrane were conducted to identify all articles with publication from January 2015 until March 2020 focusing on the effectiveness of PDT as adjunctive therapy in the nonsurgical treatment of chronic periodontitis patients. Searching articles with full-text was done manually, from 454 articles found, there were 20 articles discussed the topic above, then screening the articles were done based on the existing inclusion criteria and the final result was obtained 5 articles that included in this study, had been determined to meet the criteria eligibility. The selected articles are reviewed according to PICO questions.
Results: Out of 5 articles with total 164 patients that met the inclusion criteria, explained that there was a significant change from the assessment of probing depth (PD), clinical attachments level (CAL), bleeding on probing (BOP) in chronic periodontitis treatment with SRP + PDT compared to SRP alone at baseline, 1 month, and 3 months follow-up.
Conclusions: Treatment with SRP + PDT as adjunctive therapy is recommended as a modality for the treatment of chronic periodontitis during the maintenance stage in the nonsurgical periodontal treatment.
Keywords: Laser therapy, Photodynamic, Periodontal treatment, Chronic periodontitis

INTRODUCTION
Chronic periodontitis is a common inflammatory disease that can cause gingival inflammation, resorption of the alveolar bone, the oscillation of teeth, and tooth loss. This disease is largely caused by a subgingival microbiota infection combined with an inflammatory response in the host cell. Periodontitis treatment seeks to remove bacterial biofilms and calculus from teeth and obtain good root surface biocompatibility.1,2,3,4 For many years, scaling and root planning (SRP), in combination with a manual scaler using a hand curette and ultrasonic scaler, remains a gold standard in treatment for periodontal disease, and has beneficial results.5 However, conventional treatments have limitations, such as difficulties in accessing deep periodontal pockets and other anatomical structures.4,6

Although there are clinical and microbiological improvements in the majority of cases, at present none of the mechanical instruments is efficient in thoroughly eliminating calculus and bacterial deposits from the periodontal pocket. Antimicrobial chemotherapy is known to suppress periodontal pathogenic bacteria and increase the benefits obtained by conventional mechanical treatment. The inefficiency of some antimicrobial drugs (that is, systemic antibiotics) for drug resistance and side effects such as possible allergic reactions, toxicity, and gastrointestinal complications, should be considered when using these antimicrobial therapies.4,5 Photodynamic therapy (PDT), also called photoradiation therapy, phototherapy or photochemotherapy, was introduced in medical therapy in 1904 as inactivation of light-induced cells, microorganisms, or molecules. PDT involves a combination of visible light, usually through the use of a laser diode and a photosensitizer.7 Photosensitizers are compounds that can to absorb certain light with wavelengths and convert it into useful energy. PDT is recommended as a treatment modality that can reduce the demand for flap surgery, reduce processing time, and the risk of bacteremia. This can also be useful in areas that are difficult to access.7 Thus, PDT can represent a promising alternative to reduce bacterial burden or even eradicate certain periodontal pathogens.8 Photodynamic therapy combines low-level laser light with photosensitizer (a non-toxic dye), which binds to the target cell. Photosensitizers, such as toluidine blue, methylene blue and malachite green, absorb light with a certain wavelength.4 In an excited state, molecules can react with molecules from the environment, for example with oxygen. Reactive oxygen species can be produced, which can cause oxidative damage to target cells.6 Several studies have shown that PDT in addition to SRP is more effective in improving clinical parameters in the treatment of periodontal disease compared to SRP alone.8,9,10 The purpose of this paper is to determine the effect of photodynamic as additional therapy in the management of chronic cases of periodontitis.

MATERIAL AND METHODS
Electronic Pubmed, Wiley Online Library, and Cochrane Library searches were conducted to identify articles published in dental journals from January 2015 until March 2020 which focused in photodynamic therapy as adjunctive therapy in treatment of chronic periodontitis. There are 46 studies that explained about this and with 5 studies met the inclusion criteria. PRISMA guidelines and PICO questions were used in this review.10,11

ABSTRACT
Submitted: 02.04.2020
Revised: 10.05.2020
Accepted: 25.06.2020

INTRODUCTION
Chronic periodontitis is a common inflammatory disease that can cause gingival inflammation, resorption of the alveolar bone, the oscillation of teeth, and tooth loss. This disease is largely caused by a subgingival microbiota infection combined with an inflammatory response in the host cell. Periodontitis treatment seeks to remove bacterial biofilms and calculus from teeth and obtain good root surface biocompatibility.1,2,3,4 For many years, scaling and root planning (SRP), in combination with a manual scaler using a hand curette and ultrasonic scaler, remains a gold standard in treatment for periodontal disease, and has beneficial results.5 However, conventional treatments have limitations, such as difficulties in accessing deep periodontal pockets and other anatomical structures.4,6

Although there are clinical and microbiological improvements in the majority of cases, at present none of the mechanical instruments is efficient in thoroughly eliminating calculus and bacterial deposits from the periodontal pocket. Antimicrobial chemotherapy is known to suppress periodontal pathogenic bacteria and increase the benefits obtained by conventional mechanical treatment. The inefficiency of some antimicrobial drugs (that is, systemic antibiotics) for drug resistance and side effects such as possible allergic reactions, toxicity, and gastrointestinal complications, should be considered when using these antimicrobial therapies.4,5 Photodynamic therapy (PDT), also called photoradiation therapy, phototherapy or photochemotherapy, was introduced in medical therapy in 1904 as inactivation of light-induced cells, microorganisms, or molecules. PDT involves a combination of visible light, usually through the use of a laser diode and a photosensitizer.7 Photosensitizers are compounds that can to absorb certain light with wavelengths and convert it into useful energy. PDT is recommended as a treatment modality that can reduce the demand for flap surgery, reduce processing time, and the risk of bacteremia. This can also be useful in areas that are difficult to access.7 Thus, PDT can represent a promising alternative to reduce bacterial burden or even eradicate certain periodontal pathogens.8 Photodynamic therapy combines low-level laser light with photosensitizer (a non-toxic dye), which binds to the target cell. Photosensitizers, such as toluidine blue, methylene blue and malachite green, absorb light with a certain wavelength.4 In an excited state, molecules can react with molecules from the environment, for example with oxygen. Reactive oxygen species can be produced, which can cause oxidative damage to target cells.6 Several studies have shown that PDT in addition to SRP is more effective in improving clinical parameters in the treatment of periodontal disease compared to SRP alone.8,9,10 The purpose of this paper is to determine the effect of photodynamic as additional therapy in the management of chronic cases of periodontitis.

MATERIAL AND METHODS
Electronic Pubmed, Wiley Online Library, and Cochrane Library searches were conducted to identify articles published in dental journals from January 2015 until March 2020 which focused in photodynamic therapy as adjunctive therapy in treatment of chronic periodontitis. There are 46 studies that explained about this and with 5 studies met the inclusion criteria. PRISMA guidelines and PICO questions were used in this review.10,11

ABSTRACT
Submitted: 02.04.2020
Revised: 10.05.2020
Accepted: 25.06.2020

INTRODUCTION
Chronic periodontitis is a common inflammatory disease that can cause gingival inflammation, resorption of the alveolar bone, the oscillation of teeth, and tooth loss. This disease is largely caused by a subgingival microbiota infection combined with an inflammatory response in the host cell. Periodontitis treatment seeks to remove bacterial biofilms and calculus from teeth and obtain good root surface biocompatibility.1,2,3,4 For many years, scaling and root planning (SRP), in combination with a manual scaler using a hand curette and ultrasonic scaler, remains a gold standard in treatment for periodontal disease, and has beneficial results.5 However, conventional treatments have limitations, such as difficulties in accessing deep periodontal pockets and other anatomical structures.4,6

Although there are clinical and microbiological improvements in the majority of cases, at present none of the mechanical instruments is efficient in thoroughly eliminating calculus and bacterial deposits from the periodontal pocket. Antimicrobial chemotherapy is known to suppress periodontal pathogenic bacteria and increase the benefits obtained by conventional mechanical treatment. The inefficiency of some antimicrobial drugs (that is, systemic antibiotics) for drug resistance and side effects such as possible allergic reactions, toxicity, and gastrointestinal complications, should be considered when using these antimicrobial therapies.4,5 Photodynamic therapy (PDT), also called photoradiation therapy, phototherapy or photochemotherapy, was introduced in medical therapy in 1904 as inactivation of light-induced cells, microorganisms, or molecules. PDT involves a combination of visible light, usually through the use of a laser diode and a photosensitizer.7 Photosensitizers are compounds that can to absorb certain light with wavelengths and convert it into useful energy. PDT is recommended as a treatment modality that can reduce the demand for flap surgery, reduce processing time, and the risk of bacteremia. This can also be useful in areas that are difficult to access.7 Thus, PDT can represent a promising alternative to reduce bacterial burden or even eradicate certain periodontal pathogens.8 Photodynamic therapy combines low-level laser light with photosensitizer (a non-toxic dye), which binds to the target cell. Photosensitizers, such as toluidine blue, methylene blue and malachite green, absorb light with a certain wavelength.4 In an excited state, molecules can react with molecules from the environment, for example with oxygen. Reactive oxygen species can be produced, which can cause oxidative damage to target cells.6 Several studies have shown that PDT in addition to SRP is more effective in improving clinical parameters in the treatment of periodontal disease compared to SRP alone.8,9,10 The purpose of this paper is to determine the effect of photodynamic as additional therapy in the management of chronic cases of periodontitis.

MATERIAL AND METHODS
Electronic Pubmed, Wiley Online Library, and Cochrane Library searches were conducted to identify articles published in dental journals from January 2015 until March 2020 which focused in photodynamic therapy as adjunctive therapy in treatment of chronic periodontitis. There are 46 studies that explained about this and with 5 studies met the inclusion criteria. PRISMA guidelines and PICO questions were used in this review.10,11
Search Strategy

Initial PubMed, Wiley and Cochrane Library search of the English language literature were performed to establish a study protocol. The searches were conducted to identify articles published in dental journals from 2015 until 2019 of years which focused in photodynamic therapy as adjunctive therapy in the treatment of chronic periodontitis. The MeSH keywords used were “photodynamic, laser therapy, periodontal treatment, chronic periodontitis”. The search limits applied to the electronic search were the English language, search period, and type of text availability. Manual searches of published full-text articles and related reviews were performed afterward. There are 46 studies explained about this, with only 5 studies met the inclusion criteria. Specific keywords were used to identify the appropriate studies needs and followed the characteristics of PICO questions.10

Eligibility Criteria

The inclusion criteria in this study are:

2. Studies included were clinical study at humans that examined the adjunctive effects of photodynamic/laser therapy in nonsurgical periodontal treatment.
3. Participants were patients with the diagnosis of chronic periodontitis were systematically health.
4. The outcome variables included were Probing Depth (PD), Clinical Attachment Loss (CAL), and Bleeding On Probing (BOP) with 1 and/or 3 month(s) follow up.

The exclusion criteria:

1. Studies that did not available in full text.
2. Studied only examined laser therapy as an adjunctive effect in nonsurgical periodontal treatment.
3. Studies only mention one of parameter clinic (PD/CAL/BOP).
4. Potential participants who had any systemic disease or who were under the medication and who had undergone periodontal treatment within the past 6 months.

Selections of Study

Specific keywords were used by 6 participating authors (SO, AR, PT, RF, IF, WW) resulted in the selection of the papers based on the reading of abstract and full-text. Independently, the six investigators selected the paper based on inclusion criteria formerly set. After that, all abstracts and full-texts were downloaded and individually evaluated. The eligibility criteria were used to identify the articles that will be used for this systematic review.

Extraction of Data

The data obtained from six reviewers through assessment of chronic periodontitis with SRP compared with SRP + PDT and used several clinical parameters such as CAL, PD, and BOP after 1 month and 3 months follow up. All of the full-texts which met the inclusion criteria were read independently by six reviewers and evaluated to formulate this systematic review.

Figure 1: The flow chart of the articles selection
RESULT
In these five articles that fit the eligibility criteria (Table I), it was found that the average patient with chronic periodontitis had an impact on the tissue supporting the teeth, so it was necessary to have proper treatment. Based on the number of samples from this paper there were 173 people involved in this study, with an average age of 18 - 74 years based on existing inclusion and exclusion criteria. Based on the clinical parameters observed, PD, CAL, and BOP. In the control group, patients treated with scaling and root planing, while the test group was patients treated with additional treatments, namely PDT combined with scaling and root planing. The results are then seen at 1 and 3 months after treatment. The PD, CAL, and BOP clinical parameters showed a statistically significant difference at baseline, 1 month, and 3 months follow up in the test and control groups, although there were several journals did not conduct a BOP examination in that journal. From the 5 articles discussed the effectiveness of photodynamic therapy (PDT) as adjunctive to scaling and root planing therapy (SRP) in the nonsurgical treatment of chronic periodontitis patients, it can be shown in the following table I.
Table 1: Assessment of clinical parameters between scaling root planning (SRP) therapy compared with photodynamic therapy (SRP + PDT) as adjunctive to nonsurgical periodontal treatment in chronic periodontitis patients.

<table>
<thead>
<tr>
<th>No.</th>
<th>Author, Year</th>
<th>Study design</th>
<th>Sample</th>
<th>Age Range</th>
<th>Treatment arms</th>
<th>Clinical Parameter</th>
<th>Evaluation Periode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carvalho VF et al., 2015</td>
<td>A randomized controlled clinical trial</td>
<td>34</td>
<td>35-75 years</td>
<td>SRP vs SRP + PDT</td>
<td>PD (mm)</td>
<td>Baseline: 4.87 ± 0.7 Test: 4.79 ± 0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAL (mm)</td>
<td>Baseline: 5.87 ± 1.39 Test: 5.56 ± 0.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BOP (%)</td>
<td>Baseline: 42.18 ± 19.83 Test: 58.33 ± 29.70</td>
</tr>
<tr>
<td>2</td>
<td>SJ Pulikkotil et al., 2016</td>
<td>Randomized Control Trial</td>
<td>32 years</td>
<td>18-60 Years</td>
<td>SRP vs SRP + PDT</td>
<td>PD (mm)</td>
<td>Baseline: 4.95 ± 0.95 Test: 56.84 ± 26.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAL (mm)</td>
<td>Baseline: 5.76 ± 1.02 Test: 5.46 ± 0.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BOP (%)</td>
<td>Baseline: 52.11 ± 21.95 Test: 56.84 ± 26.76</td>
</tr>
<tr>
<td>3</td>
<td>Abdul Ahad et al., 2016</td>
<td>A clinical Study</td>
<td>30</td>
<td>-</td>
<td>SRP vs SRP + PDT</td>
<td>PD (mm)</td>
<td>Baseline: 7.53 ± 1.31 Test: 7.90 ± 1.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAL (mm)</td>
<td>Baseline: 8.47 ± 1.81 Test: 8.70 ± 1.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BOP (%)</td>
<td>Baseline: - Test: -</td>
</tr>
<tr>
<td>4</td>
<td>Pitchanun Buandidpun et al., 2017</td>
<td>A split-mouth randomized clinical trial</td>
<td>20</td>
<td>-</td>
<td>SRP vs SRP + PDT</td>
<td>PD (mm)</td>
<td>Baseline: 4.91 ± 1.02 Test: 4.96 ± 1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAL (mm)</td>
<td>Baseline: 5.01 ± 1.57 Test: 5.15 ± 1.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BOP (%)</td>
<td>Baseline: - Test: -</td>
</tr>
<tr>
<td>5</td>
<td>Vidal et al., 2017</td>
<td>Randomized controlled clinical trial</td>
<td>60</td>
<td>33-74 years</td>
<td>SRP vs SRP + PDT</td>
<td>PD (mm)</td>
<td>Baseline: 5.83 ± 1.11 Test: 5.83 ± 1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAL (mm)</td>
<td>Baseline: 6.19 ± 1.42 Test: 6.47 ± 1.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BOP (%)</td>
<td>Baseline: 100 Test: 100</td>
</tr>
</tbody>
</table>
DISCUSSION

Classical concept of treatment for chronic periodontitis purpose to stop the inflammatory process through subgingival biofilm removal. This includes plaque control nonsurgical procedures and SRP followed by surgical therapy wherever indicated. Deep periodontal pockets were selected as these are difficult to be completely debrided by SRP alone due to limited access. Photodynamic therapy (PDT) or Laser therapy is a new set of practice that shew necessary as adjunctive periodontal treatment. The laser penetrates the tissues and body fluids and selectively affects the inflammatory mediators.

Diode laser helps to reduce subgingival microbota thus providing sites for new connective tissue attachment. It also helps in the promotion of hemostasis, has detoxifying effects, and enhances healing. Besides that, PDT using methylene blue dye exerts antimicrobial effect, by allowing methylene blue to enter gram-negative bacteria through the porin-protein channels of the outer membrane which upon activation using a diode laser, releases oxidizing metabolites that have harmful effects on lipopolysaccharide.

The result of this systematic search of the literature showed had been performed to evaluate the effect of PDT in the treatment of chronic periodontitis. The search of the literature revealed that PDT has been utilized either as an adjunctive therapy. The clinical outcomes of the PDT and SRP were compared with those of SRP alone.

All of the studies included in this review showed a reduction of clinical parameters namely PD, CAL, and BOP after nonsurgical therapy. The result indicated that the clinical parameters improve significantly from baseline to 1 and 3 months after treatment interval in both groups. However, there is one study that only showed one-time interval. As well as, both groups resulted in significant improvement in the total number of pockets ≥ 4 mm.

Three studies report that these outcome parameters did not improve statistically significant between the test and control groups. Contradictory, Betsy et al demonstrated that the use of the photosensitizer after SRP significantly reduced PPD and CAL at 3 and 6 months after the treatment compared with SRP alone. Previous studies have shown that the SRP + PDT combination benefits clinical parameters to a greater extent than does SRP alone, though other investigators have reported no additional advantage. Under experimental conditions, the combination of SRP + PDT did not significantly improve the analyzed clinical parameters. These discrepancies are possibly due to variations in the conditions of PDT application or to the experimental design.

Only two studies included the use of PDT revealed significant differences between groups in PD and BOP parameters. Ahad et al in their study showed a combination of SRP and aPDT was more effective in the reduction of PD at 1 month after treatment. Similarly, Pulikkotil et al observed that significant differences of BOP in 1 month compared with the control groups. Chitsazi et al and Crispino et al in their study stated that sites treated with PDT, which had PD of ≥5 mm, showed a greater reduction in PI, CAL, PD, and BOP. Bundidpun et al found that the test group in a group of periodontal pockets ≥ 4 mm that combined PDT with SRP showing a reduction in the number of probing depth at 76.24%, which higher than the control group which reduced to 75.24%, 14, 26, 27.

Although, some studies failed to show statically significant benefit in clinical outcomes. Several studies have shown that PDT as an adjunct to SRP was more effective in improving clinical parameters in the treatment of periodontal disease compared with SRP alone. Antimicrobial photodynamic therapy has been reported to result in additional improvement in clinical parameters of periodontal disease. It is supported by in vitro studies that report the effective killing of periodontal microbes in planktonic and biofilm samples. Besides that, the benefits of PDT as an adjunct nonsurgical treatment are that it can increase the patient’s comfort and decreasing treatment time.

CONCLUSION

In this systematic review, we conclude that the effect of PDT as adjunctive therapy following SRP can influence several clinical parameters such as PD, CAL, and/or BOP comparing with SRP alone at evaluation period in one month, three months or both. So the treatment of chronic periodontitis with SRP + PDT as adjunctive therapy is recommended as a modality for the treatment of chronic periodontitis during the maintenance stage in the nonsurgical periodontal treatment.

ACKNOWLEDGMENT

This study was supported by Periodontology Department, Hasanuddin University, Makassar, Indonesia, for their support to conduct the study.

REFERENCE

Photodynamic Therapy as Adjunctive Treatment of Chronic Periodontitis: A Systematic Review

Oktawati S et al.


