Poultry Salmonella Sensitivity to Antibiotics

Ekaterina Lenchenko1, Dmitry Blumenkrants2, Yury Vatnikov2, Evgeny Kulikov2, Van Khai3, Nadezhda Sachivkina4, Larisa Gnezdilova5, Nikolay Sturov5, Nikolay Sakhno5, Vladimir Kuznetsov5, Alexander Strizhakov5, Tatiana M ansur5

1Department of Veterinary Medicine, Moscow State University of Food Production, 11, Volokolamskoe highway, Moscow, 125080, Russia
2Department of Veterinary Medicine, Peoples’ Friendship University of Russia (RUDN University), 6, Mikkluho-Maklaya street, Moscow, 117198, Russia
3Department of Microbiology and Virology, Peoples’ Friendship University of Russia (RUDN University), 6, Mikkluho-Maklaya street, Moscow, 117198, Russia
4Department of Veterinary Medicine, Federal State Educational Institution of Higher Professional Education Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skyrabin, 23, Academician Skryabin street, Moscow, 109472, Russia.
5Department of General medical practice, Peoples’ Friendship University of Russia (RUDN University), 6, Mikkluho-Maklaya street, Moscow, 117198, Russia
6Orel State Agrarian University named after N.V.Parakhin (Orel SAU), 69, General Rodin street, Orel, 302019, Russia

*E-mail: sachivkina@yandex.ru

ABSTRACT

The objects of study were microorganisms, isolated from pathological material of chicken breeds “RoSS 208” and “Luong Phuong”; quails breed “Coturnix”; ducks breeds “C. V. super M” and a “Khaki Campbell”; quails breed “Coturnix”. The material of chicken breeds “RoSS 208” and “Luong Phuong”; ducklings was obtained from pathological material of chicken breeds “C. V. super M”. The material of ducklings was obtained from pathological material of chicken breeds “RoSS 208” and “Luong Phuong”. The material of chicken breeds “C. V. super M” and a “Khaki Campbell”; quails breed “Coturnix”. The material of ducklings was obtained from pathological material of chicken breeds “RoSS 208” and “Luong Phuong”.

INTRODUCTION

Widespread and arbitrary use of antibacterial drugs in veterinary medicine, including the production of food for animals, is one of the main factors contributing to the development and spread of microbial resistance to antibacterial drugs.2,3,4 Salmonellosis in animals and humans can occur due to 2500 serovars.5 Resistance of Salmonella to antibiotics has dramatically increased worldwide recent years.6 Poultry and poultry products are known reservoirs for pathogenic microorganisms, and numerous reports describe the prevalence of Salmonella associated with live poultry, the production environment and processing plants.7,8 Antibiotics were used in poultry to treat infections, and to counteract the adverse effects of stress reactions. Growing Salmonella resistant strains in humans is associated with widespread use of antibacterial drugs in animal feed production.9 The presence of antimicrobial residues in meat has several consequences for human health, as a possible contribution is the development of bacteria resistance to antibacterial drugs.10 Bacterial biofilms are closely associated with clinical infections and promote drug resistance.11 In biofilms, bacteria have increased antibiotic resistance compared to the plankton form, which leads to low treatment efficiency.12,13 Biofilm is usually defined as a structured community of bacterial cells enclosed in a polymer matrix of its own production and attached to an inert or living surface.14 Bacterial biofilms promote drug resistance, in particular, multi-resistant strains of Salmonella formed biofilms for the period from 18 to 30 hours. The results showed a potential antibacterial effect of Berberine on Salmonella strains. A partial index of inhibitory concentration of 0.75 revealed a synergistic effect of Berberine and Ciprofloxacin against strains of Salmonella. Berberine increases the antimicrobial activity of Ciprofloxacin against Salmonella, and their combination may reduce the dose of Ciprofloxacin required for therapy, providing an additional benefit to avoid drug resistance.15 Changes in enzymatic traits are associated with obtaining genetic information with lactose operon, plasmid “Bluescript” in the composition of this operon contains the gene of resistance to ampicillin, so it is recommended to use a duplex polymerase chain reaction based on the identification of polymorphic sites of isolates genes.16 The emergence and spread of antibacterial-resistant bacteria has been identified as a global public health priority and underlines the importance of an epidemiological surveillance system for monitoring antibiotic resistance.17,18 This can be a public health risk in the transmission of resistant strains of Salmonella to humans through the consumption of contaminated poultry products.19 Growing resistant strains of Salmonella isolated from cases of salmonellosis in humans were associated with the...
Materials and Methods

The objects of study were microorganisms, isolated from pathological material of chicken breeds "RoSS 208" and "Luong Phuong", ducklings breeds "C. V. super M" and a "Khaki Campbell"; quails breed "Coturnix" from the provinces of Hanoi, Bacinh, Quanginh Vietnam. Samples were collected from pathological poultry material. Müller-Kauffmann Tetrathionate-Novobiocin Broth (Biokar Diagnostic) broth, which supports the growth of salmonella serovars, pathological material, and subcultures on the media: "Rappaport - Vassiliadis Medium". "MSRV-agar" (Biokar Diagnostic), "Ram bach agar", Xylose Lysine Deoxycholate agar "XLD - agar" (Merck) was performed in accordance with standard methods. Gram-negative bacteria that form on the "XLD - agar" reddish colonies with black center and transparent zone were further processed and identified by biochemical tests like Catalase test, Citrate test, Triple Sugar iron test, Urease test, Motility test, Methyl-Red and Voges-Proskauer test, Gas production test, Sulfide production test and confirmed.

The sensitivity of microorganisms to antibiotics was studied in accordance with the guidelines "Methodical Instructions 4.2.1890-4 Determination of the microorganisms sensitivity to antibacterial drugs." Determination of the minimum inhibitory concentration ("MIC") of antibiotics was performed using "E-test" (AB-Biodisk, Sweden).

The study of the sensitivity of microorganisms to antibacterial drugs by disco-diffusion method was carried out on the medium "Müller-Hinton" (HiMedia) using standard paper discs with antibacterial drugs (Ampicillin, Gentamicin, Kanamycin, Nalidixic acid, Norfloxacin, Streptomycin, Tetracycline, Trimethoprim, Ceftazidim, Ciprofloxacin, Enrofloxacin).

For inoculation we used a standard bacterial suspension equivalent to 0.5 according to the Mcfarland standard, diluted 100 times on a nutrient broth, the concentration of the microorganism in it was approximately $1.5 \times 10^8$ CFU/ml. Suspension was applied with a pipette to the surface of the Petri dish with a Müller-Hinton medium in the volume of 1-2 ml, evenly distributed over the surface by swaying, after which the excess was removed with a pipette, the surface of the medium was dried. Application of paper discs was carried out using sterile tweezers or an automatic dispenser. Immediately after the application of paper discs, Petri dishes were placed in a thermostat upside down and cultivated at 37°C for 18-24 hours. Diameter of the growth inhibition zones was measured to an accuracy of 1.0 mm. When measuring the growth inhibition zones, they were oriented to the zone of complete suppression of visible growth.

Determination of the minimum inhibitory concentration ("MIC") of antibiotics was performed using "E-test" (AB-Biodisk, Sweden), which is a narrow strip of polymer (0,5x6,0 cm), which is applied to the gradient of antibacterial drugs concentrations (from minimum to maximum). Suppression of microbial growth around the "E-test" strip was taken into account in the area where the concentration of antibacterial drugs diffusing from the strip is higher than the minimum inhibitory concentration, thus forming a teardrop-shaped inhibition zone. The values of the antibacterial drugs concentration in each area of the strip are printed on the outer surface of the "E-test". The value of the minimum inhibitory concentration was taken into account in the area where the boundary of the growth inhibition zone came close to the strip.

The experimental data were statistically processed using the program "Statistica" for PC Microsoft Excel 2007. In the results statistical analysis of experimental studies the differences were considered significant at $p \leq 0.05$.

Results

In 499 samples of the birds material, including 115 samples of chickens, 300 – ducklings, 84 – quails, we discovered 153 microorganisms cultures of the genus Salmonella, which were 30.66 % of the total number of selected microorganisms cultures. The etiological structure of poultry salmonellosis is shown in FIG 1.
Among the isolated cultures of microorganisms after serological identification S. typhimurium were 60 (39.22 %) strains; S. albany – 32 (20.92 %); S. enteritidis – 20 (13.07 %); S. hadar – 9 (5.88 %); S. adopa and S. thompson – 5 (3.27 %); S. indiana – 4 (2.61 %); S. heidelberg, S. mbandaka and S. shalkwijk – 3 (1.96 %); S. give – 2 (1.31 %); S. derby and S. havana – 1 (0.65 %); other species – 5 (3.27 %).

52 cultures of microorganisms of genus Salmonella were isolated from 115 samples of chicken pathological material, which is 45.21 % of the total number of selected cultures of microorganisms. S. albany were 32 (61.54 %) strains; S. typhimurium and S. enteritidis – 5 (9.62 %); S. agona and S. shalkwijk – 3 (5.77 %); S. hadar – 2 (3.85 %); S. derby – 1 (1.92 %); other species – 1 (1.92 %).

74 strains of Salmonella were isolated from 300 samples of ducklings patmaterial, predominant serotypes were S. typhimurium – 51 (68.92 %) strains; S. enteritidis – 7 (9.46 %), S. hadar – 5 (6.76 %), S. indiana – 4 (5.41 %), S. give and S. mbandaka – 2 (2.70 %), other species – 3 (4.05 %).

27 strains of Salmonella (32.14%) were isolated from 84 samples of quail patmaterial, including S. enteritidis of 8 (29.63 %) strains; S. thompson – 5 (18.52 %); S. typhimurium – 4 (14.81 %); S. heidelberg – 3 (11.11 %); S. hadar and S. agona – 2 (7.41 %); S. mbandaka and S. havana – 1 (3.70 %); others species – 1 (3.70 %) (TABLE 1).

### TABLE 1. Results of serological identification of Salmonella.

<table>
<thead>
<tr>
<th>Bacterial Strains</th>
<th>Chickens</th>
<th>Ducks</th>
<th>Quails</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. agona</td>
<td>3/3</td>
<td>-/ -</td>
<td>2/4</td>
<td>5/3</td>
</tr>
<tr>
<td>S. albany</td>
<td>32/61.54</td>
<td>-/ -</td>
<td>-/ -</td>
<td>32/20.92</td>
</tr>
<tr>
<td>S. derby</td>
<td>1/1.92</td>
<td>-/ -</td>
<td>-/ -</td>
<td>1/0.65</td>
</tr>
<tr>
<td>S. give</td>
<td>-/ -</td>
<td>2/2.70</td>
<td>-/ -</td>
<td>2/1.31</td>
</tr>
<tr>
<td>S. hadar</td>
<td>2/3.85</td>
<td>5/6.76</td>
<td>2/7.41</td>
<td>9/5.88</td>
</tr>
<tr>
<td>S. havana</td>
<td>-/ -</td>
<td>-/ -</td>
<td>1/3.70</td>
<td>1/0.65</td>
</tr>
<tr>
<td>S. heidelberg</td>
<td>-/ -</td>
<td>-/ -</td>
<td>3/11.11</td>
<td>3/1.96</td>
</tr>
<tr>
<td>S. indiana</td>
<td>-/ -</td>
<td>4/5.41</td>
<td>-/ -</td>
<td>4/2.61</td>
</tr>
<tr>
<td>S. mbandaka</td>
<td>-/ -</td>
<td>2/2.70</td>
<td>1/3.70</td>
<td>3/1.96</td>
</tr>
<tr>
<td>S. shalkwijk</td>
<td>3/5.77</td>
<td>-/ -</td>
<td>-/ -</td>
<td>3/1.96</td>
</tr>
<tr>
<td>S. thompson</td>
<td>-/ -</td>
<td>-/ -</td>
<td>5/18.52</td>
<td>5/3.27</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>5/9.62</td>
<td>51/68.92</td>
<td>4/14.81</td>
<td>60/39.22</td>
</tr>
<tr>
<td>others species</td>
<td>1/1.92</td>
<td>3/4.05</td>
<td>1/3.70</td>
<td>5/3.27</td>
</tr>
</tbody>
</table>

In the study of Salmonella sensitivity isolated from birds to antibacterial drugs found that 3 (10.0 %) were sensitive to drugs group β-lactams (Ampicillin); 7 (23.33 %) - aminoglycosides (Gentamicin, Kanamycin, Streptomycin); 9 (30.0 %) - sulfonamides (Trimethoprin); 3 (10.0 %) - tetracycline (Tetracycline); 21 (70.0 %) - fluoroquinolones (Nalidixic acid, Norfloxacin, Ciprofloxacin, Enrofloxacin); 20 (66.67 %) - cephalosporins (Ceftazidim).

Moderate resistance was in 8 (26.67 %) strains to β-lactam drugs; 6 (20.0 %) - aminoglycosides; 7 (23.23 %) - sulfonamides; 2 (6.67 %) - tetracyclines; 4 (13.33 %) - fluoroquinolones; 6 (20.0 %) - cephalosporins. Resistance to antibiotics was in 19 (63.33 %) strains to the group β-lactams; 17 (56.67 %) aminoglycoside; 14 (46.67 %) - sulfonamides; 25 (83.33 %) - tetracycline; 5 (16.67 %) - fluoroquinolone; 4 (13.33 %), cephalosporins (TABLE 2).

### TABLE 2. Results of the Salmonella sensitivity to antibacterial drugs.

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Total number test strains</th>
<th>Sensitive</th>
<th>Moderate resistant</th>
<th>Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-lactams</td>
<td></td>
<td>Ab. (%)</td>
<td>Ab. (%)</td>
<td>Ab. (%)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>30</td>
<td>3/10.0</td>
<td>8/26.67</td>
<td>19/63.33</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td></td>
<td>30/18 60.0</td>
<td>2/6.67</td>
<td>10/33.33</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>30</td>
<td>3/10.0</td>
<td>15/50.0</td>
<td>12/40.0</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>30</td>
<td>3/10.0</td>
<td>0/0</td>
<td>29/96.67</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>30</td>
<td>3/10.0</td>
<td>0/0</td>
<td>29/96.67</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td></td>
<td>30/9 30.0</td>
<td>7/23.33</td>
<td>14/46.67</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td></td>
<td>30/3 10.0</td>
<td>2/6.67</td>
<td>25/83.33</td>
</tr>
</tbody>
</table>
The minimum inhibitory concentration ("MIC") were established at the intersection of the growth suppression zone and the test strip "E-test": Ampicillin-512 µg/ml; Tetracycline = 64 µg/ml; Gentamicin = 2 µg/ml; Ciprofloxacin = 1 µg/ml; Norfloxacin = 0.38 µg/ml and Ceftazidime = 0.19 µg/ml. Salmonella sensitivity to Cefazidime started from 0.19 µg/ml, Norfloxacin - 0.38 µg/ml, Ciprofloxacin -1 µg/ml, Gentamicin - 2 µg/ml.

Resistance was to ampicillin (256 µg/ml) and tetracycline (64 µg/ml). Amplitude values ranged from 0.019 µg/ml to 512 µg/ml (TABLE 3).

**TABLE 3. Minimum inhibitory concentration to antibiotics (n=30)**

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>MIC₅₀</th>
<th>MIC₉₀</th>
<th>Amplitude values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>1.5</td>
<td>512</td>
<td>0.75-512</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>1.5</td>
<td>2</td>
<td>0.75-256</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>0.023</td>
<td>0.38</td>
<td>0.016-64</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>3</td>
<td>64</td>
<td>1-512</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>0.125</td>
<td>0.19</td>
<td>0.064-512</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.125</td>
<td>1</td>
<td>0.064-64</td>
</tr>
</tbody>
</table>

Minimum inhibitory concentration (MIC)

**CONCLUSION**

Antibiotics are widely used to treat infections in humans, animals, food, and plants. The uncontrolled and broad use of antibiotics against pathogens has resulted in the occurrence of antibiotic-resistant bacteria. According to the literature, Salmonella, circulating among poultry and isolated from poultry products and raw materials, have resistance to many antibacterial drugs, especially Ampicillin, Tetracycline and Streptomycin. Thus, 114 serotypes of Salmonella (Corvallis, Brancaster and Albany) isolated from poultry were considered multiresistant. Resistance was established to Sulfonamides (96.5%), Ampicillin (89.5%), Tetracycline (85.1%), Chloramphenicol (75.4%), Trimethoprim (68.4%), Trimethoprim-Sulfamethoxazole (67.5%), Streptomycin (58.8%) and Nalidixic acid (44.4%). All strains could produce biofilms. Strong producers of biofilm were 69.3% of the studied strains.21

Salmonella resistance was reported for Doxycycline (100%), Oxytetracycline (97.62%), Neomycin (81.0%), Erythromycin (83.33%), Tetracycline (78.57%) and Cefotaxime (35.71%). Also resistance was established to Norfloxacin (26.19%), Ampicillin (21.43%), Azithromycin (21.43%), Ciprofloxacin (19.05%), Colistin (4.76%), Streptomycin (16.67%), Cefotaxime (14.19%), Enrofloxacin (14.29%), Amoxiclave (14.29%), Gentamicin (7.14%), Chloramphenicol (4.76%), Amikacin (4.76%) and Ceftazidim.8,10,17,22,23,24

Studying the circulation of antibiotic-resistant strains in the environment, Salmonella spp. bacteria were 27.0 %, including S. enteritidis - 5.9 %, S. typhimurium - 19.1 %, the most common resistance to Tetracycline - 100.0 %, Doxycycline - 100.0 %; Ampicillin - 100.0 %; Sulfamethoxazole - 92.9%; Nalidixic acid - 85.8 %; Ceftazidim - 78.6 %; Neomycin - 64.3%; Streptomycin - 50.0 %; Gentamicin - 28.6 %, all isolates were sensitive to Ciprofloxacin.25 It was found that 45.0 % of isolates showed multiple resistance to 1-5 drugs; 29.0 % – to 6-10 drugs; 22.0 % – to 11-15 drugs.26

189 Salmonella strains showed high resistance to the following drugs: Nalidixic acid (99.5%), Ampicillin (87.8%), Tetracycline (51.9%), Ciprofloxacin (48.7%), Trimethoprim / Sulfamethoxazole (48.1%) and Spectinomycin (34.4%). Moreover, 60.8% of isolates were resistant to multiple drugs, and multidrug-resistant strains increased from 44.7% to 78.6%.20

Products from broiler chickens at the slaughterhouse were contaminated with multiple-resistant Salmonella strains, which can come from animals producing food, and cross-contamination during slaughter, which contributes to the spread of resistance genes throughout the production chain.17,28

21 strains of Salmonella isolated from broiler carcasses, 20 strains (95.2%) were resistant to Ampicillin, 18 strains (85.7%) to Nalidixic acid, 17 (81%) to Cefotaxime and 13 strains (61.9%) to Tetracycline. 19 strains of Salmonella isolated from egg-laying chickens, 19 strains (100%) were resistant to Nalidixic acid and Tetracycline, 18 strains (94.7%) to Ampicillin and 13 strains (68.4%) to Ciprofloxacin. Resistant Salmonella strains can pose a risk to public health because they are widely found in raw chicken carcasses of commercial broilers and egg-laying chickens.3

Multiple resistance to antibacterial drugs is one of the factors of distribution and circulation of microorganisms in the environment and the food chain, largely due to the ability to form biofilms.29,30 Bacteria in biofilms increase antibiotic resistance compared to the plankton form, which leads to low treatment efficiency.4,12,31 The emergence and spread of bacterial resistance has been identified as a global public health priority and underlines the importance of the surveillance system for monitoring antibiotic resistance.6,17,12

The adding of antibiotics to animal and poultry feed causes...
the accumulation of drugs in the body of animals and animal products.\textsuperscript{10,18,33,34} The results of the research will create a database of antibiotic resistance drift in Salmonella sp. and determine recommendations for the use of antibacterial agents to reduce resistance to antibiotic drugs.

**SOURCE OF FUNDING**

The publication was prepared with the support of the “RU/DN University Program 5-100” (the agreement number 02.a03.0008)

**CONFLICT OF INTEREST**

The authors have no conflict of interest.

**REFERENCES**


10. Waghmare RN, Paturkar AM, Vaidya VM, Zende RJ, Dubai ZN, Dwivedi A, Gaikwad RV. Phenotypic and genotypic drug resistance profile of Salmonella serovars isolated from poultry farm and processing units located in and around Mumbai city, India. Veterinary world. 2018; 11(12), 1682-1688.


farms and slaughterhouses in the northeast of Algeria. Veterinary World. 2018; 11(8), 1102-1108.


