SYNTHESIS AND PRELIMINARY PHARMACOLOGICAL EVALUATION OF SOME NEW TRIAZOLE DERIVATIVES BEARING NABUMETONE MOIETY TARGETING CYCLOOXYGENASE ENZYME

Abstract
Objective To synthesize and initial pharmacological evaluation of new derivatives of nabumetone by incorporating triazole heterocyclic ring systems into the nabumetone moiety to optimize the activity against COX enzymes. Examination of their in vivo results by using egg white to induce acute inflammation.

Methods A group of triazole carrying nabumetone moiety have been designed, prepared, and assessed as a potential COX-inhibitors. These new derivatives were evaluated for their in vivo anti-inflammatory activity.

Results most of the tested compounds have good results in acute anti-inflammatory in vivo tests better than nabumetone.

Conclusion The synthesis of the designed derivatives (3a-e) has been successfully occurred, the anti-inflammatory evaluation of the final products shows that the addition of triazole pharmacophore into nabumetone enhanced its anti-inflammatory activity, the Preliminary study of anti-inflammatory action indicates that compound (3a-e especially 3c and 3d) have significantly more anti-inflammatory outcome than nabumetone (except 3b).

Keywords Nabumetone, triazole, chalcone, anti-inflammatory activity

INTRODUCTION:
Inflammation is the response of the body to harmful stimuli, so the body can initiate repair action.[1] It can be triggered by many stimuli like infection, injury, thermal and mechanical damage.[2] Inflammation started by cells found in tissue that discover the stimuli and then transmitted alarm signals as chemical messengers that distribute the local response and attract other cells to the area. The main symptoms of inflammation are pain, heat, redness and swelling.[3] Inflammation classified to acute and chronic.[4] The chemical messengers that involve in inflammation are locally acting bioactive lipids called prostaglandins,[5,6] Prostaglandins synthesized from membrane phospholipids mainly arachidonic acid (A.A).[7] Synthesis of prostanoids (prostaglandin and thromboxane A2 (TXA2)) happened by dioxygenation of A.A to the hydroperoxide prostaglandin G2 (PGG2) and then reduction to prostaglandin H2 (PGH2) by enzyme cyclooxygenase.
(COX).[8] The subsequent synthesis of other prostaglandins from PGH2 (PGE2, PG1, PGD2, TXA2) is stimulated by prostaglandin syntheses.[9] There are 3 types of COX enzymes COX-1, COX-2 [10] and COX-3.[11] COX-1 constitutively present in many cells and do housekeeping role while COX-2 is inducible mainly in inflammation where its expression rise by 20-fold.[12,13] The main structural differences between COX-1 and COX-2 are the replacement of IL-523 in COX-1 by Y -523 in COX-2, H-513 in COX-1 by R-513 in COX-2 and IL-434 in COX-1 by Y -434 in COX-2, these changes make COX-2 active site more flexible.[14] NSAIDs are drugs that are used for their anti-inflammatory, analgesic and antipyretic effects.[15] These drugs acting by inhibiting the action of COX enzymes so they will inhibit the production of prostaglandins in the body.[16] These drugs have many actions like; Anti-inflammatory effect, Antipyretic effect and Analgesic effect.[17] These drugs used to reduce pain like in renal colic [18], osteoarthritis [19] and endometriosis.[20] The side effects of these drugs includes; increase risk of hypertension and bleeding.[21] may cause nephrotoxicity.[22] The most common side effect is GI upset and ulceration.[23] NSAID can be classified into COX-1 selective, non-selective, COX-2 selective.[24] Nabumetone (1) [4-(6-methoxy-2-naphthyl)-butan-2-one] is NSAID. It is used in the treatment of pain and inflammation in patient with osteoarthritis, rheumatoid arthritis and severe injuries of soft tissues. Nabumetone is a prodrug after oral intake it metabolized in the liver (oxidative cleavage of its side chain) to active metabolite (2) named 6-methoxy-2-naphthyl-acetic acid this act by inhibiting of COX-1 and COX-2 so inhibit prostaglandin synthesis.[25] Chalcone is a significant group of both natural and artificial poly phenols. They are present naturally in fruits and cereals like; apples, pears, strawberries and wheat. They are secondary metabolites and precursor in the biosynthesis of flavonoids. They also have many biological activities like; antioxidant, chemo protective actions, antimutagenic, antimicrobial, anti metastatic and anti-inflammatory.[26] Chalcone are groups of nitrogen-containing heterocyclic products that have 3 nitrogen and 2 carbon in 5-membered ring. They are not widely found in nature. 1, 2, 3 triazoles have many applications in medicinal chemistry due to their unique properties like; hydrogen bond formation, dipole-dipole and π stacking interaction, stable to reduction and oxidation and stable to hydrolysis under acidic and basic conditions. the compounds that contain 1, 2, 3 triazole have many activities like antimicrobial, anti-tuberculosis, anti-inflammatory, Antiviral, anticancer, anti-diabetes and many others. [27]

MATERIALS AND METHODS MATERIALS
All reagents and anhydrous solvents were of analytical type and generally used as received from the commercial suppliers (Merck, Germany, Reidel-DeHaen, Germany, Sigma-Aldrich, Germany, Himedia,India, Rubilabor chemical , Spain and BDH, England). Nabumetone was provided by the Shanghai Renyoung Company, China. Melting points were measured by capillary method on Bambus / Electro-thermal 9100 an Electric melting point apparatus (England). Ultrasonic generation by using ultrasonic bath SB25-12 DTDN, China. The characterization of compounds was done using a FTIR spectrum were recorded on a FTIR-spectrophotometer FTIR-6100 Type A as KBr disks. 1H-NMR and 13C-NMR determined by Shimadzu Bruker 300 MHz, 75.65 (Japan) and MHz Y arian, Agilant 500 MHz, 125.64 MHz (USA).

GENERAL PROCEDURE FOR THE SYNTHESIS OF CHALCONE DERIVATIVES,
5-(6-methoxy-naphthalen-2-yl)-(4-aryl)-pent-1-en-3-one (1a-e):
Solution of (0.088 g, 2.2 mmol) of NaOH dissolved in absolute methanol : D.W. (5:2.5) was added on solution of (0.500 g, 2.2 mmol) of nabumetone (1) dissolved in solvent system diethyl ether: methanol (5:10) and stirred until the compound will thoroughly dissolved, then benzaldehyde derivatives (a-e) (2.2 mmol) was added to this mixture. The mixture was irradiated by an ultrasonic generator in a water bath at (30-35 °C) for (25 min.) turbidity appeared in the mixture; the mixture stirred for about 24 hrs. at room temperature. The mixture filtered and washed with water until the filtrate became neutral to the litmus paper. The filtered precipitate washed with ether and left to dry. [28]

GENERAL PROCEDURE FOR THE SYNTHESIS OF PHENACYL AZIDE:
To a suspension of 2-bromo-1-phenyl etheneone (1.7 gm, 8.5 mmol) in DMF (15ml) was added sodium azide (0.6 gm, 9.4 mmol) and this mixture was stirring at 20 °C for about 2 h during this time the mixture became homogenized and red colored. The mixture was diluted with ethyl acetate and washed with water. The water phase extracted the times with ethyl acetate. the combined ethyl acetate layers were washed with brine and dried over anhydrous sodium sulfate, and evaporated to dryness. [29]

GENERAL PROCEDURE FOR THE SYNTHESIS OF TRIAZOLE DERIVATIVES,
1-(5-(4-Aryl)-1-(2-oxo-2-phenylethyl)-1H-1,2,3-triazol-4-yl)-(6-methoxy-naphthalen-2-yl) propan-1-one-1 (3a-e):
Under air atmosphere, a 20 ml oven dried sealable reaction vessel contains magnetic bar chalcone (1a-e, 0.03 mmol), K2CO3 (8.3 mg, 0.06 mmol), solvent (absolute ethanol: water = 6:1) and phenacyl azide (9.66 mg, 0.06 mmol). The vessel sealed with Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 80 °C and kept on stirring for 11 hrs. After completion of the reaction, the reaction vessel left overnight and then the mixture poured on watch glass to allow the solvent evaporate, then the remaining precipitate dissolved in equal portions of ethyl acetate and water and extracted with ethyl acetate (15 ml *3). The combined organic layers washed with brine and then dried over anhydrous sodium sulfate. The desired product achieved after evaporation of ethyl acetate. [30] 5-(6-Methoxy-naphthalen-2-yl)-1-phenylpent-1-en-3-one (1a):
white powder (78% yield); m.p. 118-120°C; IR (KBr) u (cm−1): 1267(C=O-CH3), 1548 (aromatic),1604 (C=C), 1658 (C=O); 1H-NMR (DMSO-d6, 300 MHz): δ 3.01-3.06 (t, 2H, CH2−CH2), δ 3.12-3.17 (t, 2H, CH2−CH2), δ 3.87 (s, 3H, O-CH3), δ 6.92-6.97 (d, 1H, CH−CH), δ 7.40-7.42 (d, 1H, CH−CH), δ 7.13-7.28 (m, 1H, aromatic 3H); 13C-NMR (DMSO-d6 125.64 MHz); δ 29.96 (1CH,CH=CH), δ 41.88 (1CH,CH=C−O), δ 55.57 (1CH,CH=O), δ 126.90 (1C, =C=C=O), δ 142.64 (1C, =C-arlyl), δ 157.23 (1C, O−C=CH3), δ 199.65 (1C, =C=O).
5-(6-Methoxy-naphthalen-2-yl)-1-(4-methoxyphenyl)-pent-1-en-3-one (1b):
milky colored powder (80% yield); m.p 126-128 °C; IR (KBr) u (cm−1): 1249 (C=O−CH3), 1508 (aromatic),1600(C=C), 1641 (C=O); 1H -NMR (DMSO-d6,
500 MHz): δ 2.97-3.02 (t, 2H, CH2-CH2), δ 2.07-3.13 (t, 2H, CH2-CH2), δ 3.85-3.79 (s, 3H, O-CH3), δ 6.95-6.99 (d, 1H, CH=CH), δ 7.56-7.59 (d, 1H, CH=CH), δ 7.07-7.74 (m, 10H, aromatic H); 13C-NMR (DMSO-d6, 125.64 MHz): δ 30.08 (1C, CH2-aryl), δ 41.72 (1C, CH2-C=O), δ 55.57 (1C, CH3), δ 55.79 (1C, CH3-O), δ 128.0 (1C, C=O), δ 142.64 (1C, C=C=O), δ 157.71 (O), 1c (C, O-CH3), δ 161.61 (1c, C, O-CH3), δ 199.41 (1C, C=O).

5-(6-methoxynaphthila- len-2-yl)-1-(4-chlorophenyl)-pent-1-en-3-one (1c): light yellow crystals (87% yield); m.p 128-130°C; IR (KBr) ν (cm−1): 559.02 (C=O), 1265.35 (C-O, CH3), 1535.39 (aromatic), 1604.83 (C=C), 1683.91 (C=O); 1H-NMR (DMSO-d6, 300 MHz): δ 3.00-3.05 (t, 2H, CH2-CH2), 3.11-3.16 (t, 2H, CH2-CH2), 3.87 (s, 3H, O-CH3), δ 6.93-6.99 (d, 1H, CH=CH), δ 7.49-7.52 (d, 1H, CH=CH), δ 7.13-7.77 (m, 10H, aromatic H); 13C-NMR (DMSO-d6, 125.64 MHz): δ 29.92 (1C, CH2-aryl), δ 41.97 (1C, CH2-C=O), δ 55.57 (1C, CH3-O), δ 127.14 (1C, C=C=O), δ 135.35 (1c, C=C=O), δ 141.17 (1C, C=aryl), δ 157.24 (1C, C-O-CH3), δ 199.94 (1C, C=O).

5-(6-methoxynaphthila- len-2-yl)-1-(4-nitrophenyl)-pent-1-en-3-one (1d): brown powder (60% yield); m.p decomposed at 165-167°C; IR (KBr) ν (cm−1): 1228 (C=O), 1252(C=O), 1346, 1487 (N2O) 1518.03 (aromatic), 1600 (C=C), 1631 (C=O); 1H-NMR (DMSO-d6, 500 MHz): δ 2.83 (t, 2H, CH2-CH2), δ 2.89 (t, 2H,CH2-CH2), δ 3.83 (s, 3H, O-CH3), δ 6.69 (d, 1H, CH=CH), δ 7.42 (d, 1H, CH=CH), δ 7.13-7.77 (m, 10H, aromatic H).

5-(6-methoxynaphthila- len-2-yl)-1-(4- (Dimethylamino)phenyl)-pent-1-en-3-one (1e): Yellow oil (48% yield); IR (KBr) ν (cm−1): 1155 (N=CH3), 1269 (C=O), 1533 (aromatic), 1599 (C=C), 1629 (C=O); 1H-NMR (DMSO-d6, 500 MHz): δ 2.95 (s, 6H(CH3)), 2.99-3.01 (t, 2H, CH2-CH2), δ 3.04 (t, 2H, CH2-CH2), δ 3.84 (s, 3H, O-CH3), δ 6.68-6.69 (d, 1H, CH=CH), δ 7.50-7.51 (d, 1H, CH=CH), δ 7.71-7.73 (m, 10H, aromatic H).

2-azido-1-phenylethan-1-one (phenacyl azide): Yellow oil or 84°C); IR (KBr) ν (cm−1): 1269 (N=CH3), 1533 (aromatic), 1599 (C=C), 1629 (C=O); 1H-NMR (DMSO-d6, 500 MHz): δ 4.89 (s, 2H(N=CH3-C=O)), δ 7.43–8.03 (m, 5H, aromatic H); 13C-NMR (DMSO-d6, 125.64 MHz): δ 55.57 (1C, C3 CH3-C=O), δ 194.92 (1C, C=O).

3-(6-methoxynaphthalen-2-yl)-1-(2-oxo-2-phenylethyl)-5-phenyl-1H,1,2,3-triazole-4-yl)propan-1-one (3a): light brown powder (80 % yield); m.p 104-106°C; IR (KBr) ν (cm−1): 2960,2915 (CH3), 2860,2830 (CH2), 1665 (CO), 1600 (amide), 1580 (C=C), 1462 (C-N), 1382 (C=O), 1259 (aromatic), 1529 (alkyl), 1422 (phenyl), 1382 (C=N), 1155 (C=O), 1048 (C=O), 829 (O-H), 740 (C=O), 670 (C=C), 601 (O=C), 548 (O=C), 448 (O=C), 337 (O=C), 237 (O=C), 138 (O=C), 128 (O=C), 107 (O=C), 96 (O=C), 85 (O=C), 74 (O=C), 63 (O=C), 52 (O=C), 41 (O=C), 30 (O=C), 19 (O=C), 18 (O=C), 17 (O=C), 16 (O=C), 15 (O=C), 14 (O=C), 13 (O=C), 12 (O=C), 11 (O=C), 10 (O=C), 9 (O=C), 8 (O=C), 7 (O=C), 6 (O=C), 5 (O=C), 4 (O=C), 3 (O=C), 2 (O=C), 1 (O=C).

5-(5-(4-(Dimethylamino)phenyl)-1-(2-oxo-2-phenylethyl)-1H,1,2,3-triazole-4-yl)propan-1-one (3e): brown powder (49 % yield); m.p 62-64°C; IR (KBr) ν (cm−1): 2969 (CH2), 2940 (CH2), 2870 (CH2), 2849 (CH2), 2346 (O=C), 1770 (C=O), 1718 (C=O), 1682 (amide), 1600 (C=O), 1596 (C=O), 1519 (C=O), 1460 (C=O), 1380 (C=O), 1330 (C=O), 1260 (C=O), 1170 (C=O), 1040 (C=O), 920 (C=O), 800 (C=O), 710 (C=O), 620 (C=O), 510 (C=O), 400 (C=O).
They were separated into different 7 groups (each one contains of 6 rats) as follow: group 1 (control [ethylene glycol])/ group 2 (nabumetone) / group 3-7 (synthesized compounds 3a-e). By utilizing the egg-white prompted edema model was examined the anti-inflammatory action of the tested compounds. Through using Vernia could be calculating the paw thickness at seven times intervals: (0, 30, 60, 120, 180, 240 and 300-min.) next to administration of the agent. For delivering of an acute inflammation through utilizing the undiluted egg-white by subcutaneous injection (s.i.) of (0.05 ml) into the left hind paw at the plantar side of the rats after the drug or vehicle administration intra peritoneal by (30 min.). The data, which was expressing by the (mean ± SEM) and products were analyzing to significantly statistic for correlation among mean values by utilizing student t-test two (Sample Assuming Equal Y variances). By utilizing ANOVA: two elements without repetition, the correlation among various collections could be making. Probability (P) value of below (0.05) was considering significantly.[32] Also by calculating the percentage of paw thickness change then drawing the percentage of change with time and calculating the area under the curve for each of the tested compounds to compare between them.[33]

Table 1: The anti-inflammatory action of synthesized compounds (3a-e), nabumetone and control on egg-white induced paw edema in rats:

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Paw thickness (mm)</th>
<th>compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>240</td>
<td>180</td>
</tr>
<tr>
<td>5.72±0.05</td>
<td>6.06±0.05</td>
<td>6.24±0.04</td>
</tr>
<tr>
<td>2.32±0.06</td>
<td>2.32±0.06</td>
<td>2.66±0.06</td>
</tr>
<tr>
<td>2.27±0.06</td>
<td>2.27±0.06</td>
<td>2.57±0.06</td>
</tr>
<tr>
<td>2.31±0.06</td>
<td>2.31±0.06</td>
<td>2.66±0.05</td>
</tr>
<tr>
<td>2.28±0.06</td>
<td>2.28±0.06</td>
<td>2.53±0.06</td>
</tr>
<tr>
<td>2.26±0.06</td>
<td>2.26±0.06</td>
<td>2.44±0.05</td>
</tr>
<tr>
<td>2.29±0.06</td>
<td>2.29±0.06</td>
<td>2.59±0.06</td>
</tr>
</tbody>
</table>

Table 1: The percentage of paw thickness change for the synthesized compounds (3a-e), nabumetone and control on egg-white induced paw edema in rats:

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Percentage of paw thickness change</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>240</td>
</tr>
<tr>
<td>147%</td>
<td>162%</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 2: the relationship between the percentages of change in paw thickness with time for the control (propylene glycol), nabumetone, compounds (3a-e).
According to the above results, all the tested derivatives (3a-e) have more rapid onset of action than nabumetone and all of them (except 3b) have better anti-inflammatory outcome than nabumetone especially (3c and 3d).

CONCLUSION
1. The designed compounds have been successfully synthesized.
2. The synthesized compounds have been characterized and identified by determination of physical properties (melting point and description), FT-IR spectroscopy, 1H-NMR spectra and 13C-NMR.
3. The anti-inflammatory evaluation of the final products shows that the addition of triazole pharmacophore into nabumetone enhanced its anti-inflammatory action.
4. The preliminary study of anti-inflammatory activity indicates that all of the synthesized compounds have more rapid onset of action and better anti-inflammatory outcome (except 3b) than nabumetone especially (3c and 3d).

ACKNOWLEDGMENTS
The authors are greatly thankful to management and principal, Department of Pharmaceutical Chemistry/ College of Pharmacy/ Mustansiriya University for their help and support.

REFERENCES:
5. Woolbright BL, Pilebeam CC, Taylor III JA. Prostaglandin E2 as a Therapeutic Target in Bladder Cancer: From Basic Science to Clinical Trials. Prostaglandins & Other Lipid Mediators. 2020 Jan 10;106409.
7. Piazza VG, Matzkin ME, Cicconì NS, Muia NV, Valqunta S, et al. Exposure to growth hormone is associated with hepatic up-regulation of cPLA2α and COX. Molecular and Cellular Endocrinology. 2020 Apr 4;110802.