Synthesis, Characterization and Molecular Docking Simulation of Thioxothiazolidin-4-One Derivatives as Acetylcholinesterase Inhibitors

Hiba Ali Hasan 1*, Sura S. Raoof 2, Basma M. Abd Razik 2

1Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq,
2Department of Pharmaceutical Chemistry, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
* Corresponding author: hibaa/lichemist@uomustansiriyah.edu.iq

ABSTRACT
Heterocyclic compounds play an important role in biological systems and present broadly in natural and synthesized compounds such as vitamins, drugs and hormones. A series of thioxothiazolidin-4-one derivatives (3a-d) were synthesised by reaction of 3-amino rhodanine with different benzaldehydes and the structures of these compounds were confirmed via different spectroscopic methods such as FT-IR, 1H-NMR, and 13C-NMR. The physical properties of the scaffolds like melting points and RF values of pure compounds were determined as well. All derivatives were virtually screened by molecular docking study inside the active site of (AChE) enzyme. All derivatives were successfully synthesised with a high yield 84-90%. The docking result of compound 3c displayed the highest inhibitory activity against AChE, with docking score (-10.572 kcal/mol). The synthesised compounds showed significant activity as AChE inhibitors in comparison with standard drug Donepezil.

INTRODUCTION
Alzheimer’s disease (AD) is an irreversible advanced brain disease that slowly damaged memory and it is one of the most public forms of dementia [1] which have the major effect on the person’s ability to perform the daily activities [2]. According to the World Alzheimer report, this disease is one among the most significant social diseases and 17-25 million persons worldwide are predicted to fall targets of this disease in which its symptoms in most people appear after the age of sixty [3]. Regarding to ‘cholinergic hypothesis’, AD has been related to a shortage in the brain neurotransmitter, acetylcholine (Ach) [4]. Moreover, Acetylcholinesterase (AChE) catalyzes the hydrolysis of Ach in the healthy brain. Therefore, in order to sustain the level of acetylcholine (Ach) in brain and to protract its effect in exaggerated individuals, (AChEI) (acetylcholinesterase inhibitors) has been used as treatment of AD and these drugs inhibit the breakdown of acetylcholine [5]. Example of these drugs are: galantamine, rivastigmine, tacrine, and donepezil.

On the other hand, Schiff base compounds result from the condensation of aliphatic or aromatic aldehydes or ketones with primary amines; these compounds contain an azomethine group (=N–C) and their general formula is (R-N=C-R) [6-28]. Schiff bases have been reported to possess wide spectrum of biological activities [9,10]. Recently, there are limited studies for imine compounds as cholinesterase inhibitors [11]. Rhodamine (thioxothiazolidin-4-one) is a five-membered heterocyclic ring compound which has an interesting property due to its wide presence in many medicinal active natural or synthetic derivatives [12, 13]. thioxothiazolidin-4-one has a wide range of pharmaceutical activities, like analgesic, anticonvulsant [14], anti-inflammatory [15] antimalarial, antiviral, antibacterial, anticancer, and anti-diabetic properties, as well as inhibitor of HCV NS3 protease and β-Lactamase [16-19].

Since thioxothiazolidin-4-one has this wide range of biological activities and great applications in medicine, the aim of this work is synthesis of Schiff base derivatives of rhodanine and study the binding interactions of these compounds in to the active site of the AChE by using molecular docking simulation.

MATERIALS AND METHODS
Materials
All chemicals used on this study were of an analytical grade and directly used without further purification, otherwise stated. 3-Aminohodanine, 3-ethoxy-4-hydroxybenzaldehyde, 4-[(dimethylamino)benzaldehyde, 3-benzylxoy-4-methoxybenzaldehyde and n-hexane were ordered from Sigma-Aldrich, whereas 3,5-di-methoxy-4-hydroxybenzaldehyde and silica gel aluminium 60 F254 plates were obtained from Merck, Germany. Furthermore, Glacial acetic acid, methanol and ethyl acetate were purchased from BDH limited, England.

Instrumentation
Melting points for all derivatives were measured using digital Stuart scientific SMP30 melting point apparatus, UK. Furthermore, the 1H-NMR (500 MHz) and the 13C NMR (125 MHz) spectra for all scaffolds were analyse using Varian NMR 500MHz, USA while the Fourier Transform Infrared (FTIR) analysis was performed using FTIR-800 (SHIMADZU, Japan). Moreover, GC-MS analysis performed by Agilent GC-MS, USA.

Synthesis and Characterization
Four 2-thioxothiazolidin-4-one derivatives (3a-d) were synthesized according to the following protocols as shown in scheme 1.

Keywords: 2-Thioxidhiazolidin-4-one; Rhodanine; Acetylcholinesterase; and Molecular docking.

Correspondence:
Hiba Ali Hasan
1Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
*Corresponding author: Hiba Ali Hasan email-address: hibaa/lichemist@uomustansiriyah.edu.iq
Synthesis, Characterization and Molecular Docking Simulation of Thioxothiazolidin-4-One Derivatives as Acetylcholinesterase Inhibitors

**Scheme 1:** General scheme for synthesis of thioxothiazolidin-4-one derivatives (3a-d).

**GENERAL CLASSICAL HEATING METHOD**

The conventional reflux method was performed according to Prabhu et al., 2015 with slight modifications [20]. In a 50-mL round bottom flask, each aldehyde (1.2 mmol) derivative was dissolved in methanol (1 mL) and then added dropwise to 3-aminohexadione (1 mmol, 0.14 g) which was dissolved in hot methanol (15 mL), followed by two drops of glacial acetic acid. The prepared mixture was heated to reflux with stirring at 95°C for 1-4 hrs. over an oil bath. The reaction progress was monitored by TLC every thirty minutes to check the reaction development. Then, it was cooled down to room temperature after its completion as evidenced by TLC. The target compounds obtained after drying and washing the crude product with suitable solvents to produce the precipitate of 84-90% yield.

**Synthesis of (E)-3-((3-ethoxy-4-hydroxybenzylidene)amino)-2-thioxothiazolidin-4-one (3a)**

This compound was obtained as yellow powder; yield 84%; m.p.160-162; Rf 0.40 in hexane: ethyl acetate (1:2) solvent system; FT-IR (KBr, cm\(^{-1}\)): 3527 (C=O sp\(^{3}\) stretching), 2976 (C-H sp\(^{3}\) stretching), 1724 (C=O stretching), 1533 (C=N stretching), 1280 (C-O stretching), 1165 (S=C stretching). \(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta\) ppm 1.36 (t, 3H, CH\(_3\)), 4.08 (s, 2H, CH\(_2\)), 4.14 (s, 1H, OCH\(_3\)), 6.82 (d, 1H, H-5'), 7.15 (d, 2H, H-6'), 7.28 (s, 1H, H-2'), 8.63 (s, 1H, -N=CH), 9.67 (br s, 1H, OH). \(^13\)C NMR (125 MHz, DMSO-d\(_6\)) \(\delta\) ppm 14.7 (CH\(_3\)), 35.3 (CH\(_3\)), 64.0 (OCH\(_3\)), 111.1 (C-2'), 115.7 (C-5'), 122.5 (C-6'), 134.7 (C-1'), 147.2 (C-3'), 152.1 (C-4'), 163.0 (-N=CH), 169.0 (C=O), 171.1 (C=S).

**Synthesis of (E)-3-((4-(dimethylamino)benzylidene)amino)-2-thioxothiazolidin-4-one (3b)**

This compound was obtained as red powder; yield 90%; m.p.270-272; Rf 0.40 in hexane: ethyl acetate (1:1) solvent system; FTIR (KBr, cm\(^{-1}\)): 3473 (C=H sp\(^{3}\) stretching), 2904 (C-H sp\(^{3}\) ), 1689 (C=O stretching), 1579 (C=N stretching), 1373 (C-O stretching), 1167 (C=S stretching). \(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta\) ppm 3.04 (s, 6H, 2\times\text{CH}_3), 3.65 (s, 2H, CH\(_2\)), 6.78 (d, 2H, H-3', 5'), 7.49 (d, 2H, H-2', 6'), 8.50 (s, 1H, -N=CH). \(^13\)C NMR (125 MHz, DMSO-d\(_6\)) \(\delta\) ppm 34.5 (2\times\text{CH}_3), 52.2 (CH\(_3\)), 111.4 (C-3'), 111.7 (C-5'), 129.0 (C-1'), 130.6 (C-2'), 130.7 (C-6'), 130.8 (C-4'), 133.3 (N=CH), 169.9 (C=O), 170.5 (C=S).

**Synthesis of new (E)-3-((3-benzoyloxy)-4-methoxybenzylidene)amino)-2-thioxothiazolidin-4-one (3c)**

This compound was obtained as yellow powder; yield 85%; m.p.140-142; Rf 0.30 in hexane: ethyl acetate (1:1) solvent system; FTIR (KBr, cm\(^{-1}\)): 3437 (C=H sp\(^{3}\) stretching), 2926 (C-H sp\(^{3}\) stretching), 1739 (C=O stretching), 1597 (C=N stretching), 1280 (C-O stretching), 1139 (C=S stretching). \(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta\) ppm 3.6 (s, 3H, OCH\(_3\)), 4.16 (s, 2H, CH\(_2\)), 4.34 (s, 1H, OCH\(_3\)), 7.10 (d, 1H, H-3'), 7.20 (d, 2H, H-2', 6'), 7.30 (dd, 1H, H-2', 7.40 (t, 3.64, 3H, H-3', 4', 5'), 7.50 (d, 1H, H-6'), 8.54 (s, 1H, -N=CH). \(^13\)C NMR (125 MHz, DMSO-d\(_6\)) \(\delta\) ppm 34.6 (CH\(_3\)), 55.8 (OCH\(_3\)), 69.9 (OCH\(_3\)), 111.2 (C-5').
Synthesis, Characterization and Molecular Docking Simulation of Thioxothiazolidin-4-One Derivatives as Acetylcholinesterase Inhibitors

111.8 (C-2'), 124.9 (C-6'), 127.9 (C-2', 6'), 128.0 (C-3', 5'), 128.4 (C-1'), 128.5 (C-4'), 136.6 (C-1'), 148.1 (C-3'), 153.4 (C-4'), 169.7 (C=O), 170.4 (C=S), 196.7 (N=CH).

(E)-3-((4-hydroxy-3,5-dimethoxybenzylidene) amino)-2-thioxothiazolidin-4-one (3d)

This compound was obtained as yellow powder; yield 87%; m.p.195-197; Rs: 0.25 in hexane: ethyl acetate (1:1) solvent system; FTIR (KBr, cm\(^{-1}\)): 3394 (\(\nu\text{-C-H}\) sp\(^2\) stretching), 3309 (\(\nu\text{-O-H}\) stretching), 2941 (\(\nu\text{-C-H}\) sp\(^3\) stretching), 1722 (\(\nu\text{-C=O}\) stretching), 1581 (\(\nu\text{-C=N}\) stretching), 1336 (\(\nu\text{-C-O}\) stretching), 1162 (\(\nu\text{-C=S}\) stretching).

\(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta\) ppm 3.84 (s, 6H, 2\(×\text{OCH}_3\)), 3.9 (s, 2H, CH\(_2\)), 7.3 (s, 2H, H-2', 6'), 8.6 (s, 1H, -N=CH), 9.6 (br. s, 1H, OH). \(^13\)C NMR (125 MHz, DMSO-d\(_6\)) \(\delta\) ppm 55.9 (CH\(_3\)), 56.1 (2\(×\text{OCH}_3\)), 108.8 (C-2', 6'), 123.3 (C-1'), 139.6 (C-4'), 148.3 (C-3', 5'), 169.0 (-N=CH), 186.2 (C=O), 187.0 (C=S).

Computational Method

All rhodanine derivatives structures drawn by ChemDraw 18.0 software. The geometry optimization calculations were performed by energy force field method using Hyperchem software 8.0 and the results were separately saved as .mol computer files format supported by semi-empirical mechanics optimization. The lowest geometrical conformation of all 2-thioxothiazolidin-4-one derivatives were kept as .sdf computer files format.

After that, the docking study was performed for binding evaluation by Glide tool used under Schrödinger Maestro 11.1 software. Furthermore, the crystal structures acetylcholinesterase (AChE) was obtained from Protein Data Bank under codes (PDB ID: 1EVE) with anti-Alzheimer’s drug donepezil. Ligands of 2-thioxothiazolidin-4-one derivatives preparation processes were performed using LigPrep tool under the same package. Before docking processes, the receptor site preparation of enzyme was performed using ProPep tool using same software package for structure cleaning with optimization and energy minimization. Then, the filling of all missing loops was applied with preparation at target receptor quality.

The docking grid box was adjusted to 1.3 Å with an atomic charge of 0.30 and the obtained original ligands were docked back for validation process by applying flexibly XP calculation method (Glide-extra precision) for all ligands, while the enzyme active site receptor pocket was set aside rigid during all docking procedure. Finally, all obtained data was verified and sorted as .sds file format for future use.

RESULTS AND DISCUSSION

A series of four derivatives of thioxothiazolidin-4-one compounds (3a-d) were synthesized by reaction of 3-aminorhodanone with different benzaldehyde derivatives in presence glacial acetic acid as a catalyst and methanol as a solvent as shown in Scheme 1. The purity of all the synthesized compounds was confirmed by TLC and \(R_f\) values were calculated for all derivatives, while their identifications were performed via study the physical properties (melting point) as well as spectroscopic data (FTIR, \(^1\)H-NMR and \(^13\)C-NMR). The plausible mechanism of Schiff bases (3a-d) preparation involved nucleophilic addition of 3-aminorhodanone to carbonyl group as shown in Scheme 2:

![Scheme 2: Synthesis mechanism of Schiff bases (3a-d)](image)

The physical analysis of the synthesized compounds are listed in Table 1. From the results, it is evident that all compounds melt within a 1-2 °C range which assures the compounds purity.

Table 1: Physical analysis of Schiff bases (3a-d).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Molecular formula</th>
<th>Molecular Weight</th>
<th>Melting point °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>C(<em>5)H(</em>{13})N(_3)O(_3)S(_2)</td>
<td>326.37</td>
<td>160-162</td>
</tr>
<tr>
<td>3b</td>
<td>C(<em>5)H(</em>{13})N(_3)O(_3)S(_2)</td>
<td>279.38</td>
<td>270-272</td>
</tr>
<tr>
<td>3c</td>
<td>C(<em>5)H(</em>{13})N(_3)O(_3)S(_2)</td>
<td>372.46</td>
<td>140-142</td>
</tr>
<tr>
<td>3d</td>
<td>C(<em>5)H(</em>{13})N(_3)O(_3)S(_2)</td>
<td>312.36</td>
<td>195-197</td>
</tr>
</tbody>
</table>

The \(^1\)H-NMR spectrum of all Schiff base compounds displayed the most important singlets at the range of 3.65-4.16 ppm for CH\(_2\) protons and 8.50-8.63 ppm for azomethine group (-N=CH\(_3\)) as shown in Table 2 and his confirms the formation of the imine compounds (3a-d).

Table 2: Important protons in \(^1\)H-NMR spectra of 2-thioxothiazolidin-4-one derivatives (3a-d).

<table>
<thead>
<tr>
<th>Compound</th>
<th>(^1)H-NMR chemical shifts((\delta,\ ppm))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH(_2) (s)</td>
</tr>
<tr>
<td>3a</td>
<td>4.08</td>
</tr>
<tr>
<td>3b</td>
<td>3.65</td>
</tr>
<tr>
<td>3c</td>
<td>4.16</td>
</tr>
<tr>
<td>3d</td>
<td>3.90</td>
</tr>
</tbody>
</table>
The $^1$H NMR spectrum of new compound 3c is an example of these derivatives whereby this compound displayed the most important two sharp singlets at $\delta = 4.16$ and 8.54 ppm which were belong to the CH$_2$ protons and the -N=CH proton, respectively. As displayed in Fig 1, this spectrum demonstrated another distinctive signals such as doublets at 7.10, 7.20, and 7.50 ppm for H-3', H-2', 6', and H-6', respectively. Moreover, doublet of doublet resonances at 7.30 ppm is for H-2' and triplet signal at 7.40 is for H-3', 4', and 5', respectively.

Figure 1: $^1$H-NMR of (E)-3-((3-(benzyloxy)-4-methoxybenzylidene)amino)-2-thioxothiazolidin-4-one (3c)

The $^{13}$CNMR spectra for the same derivatives showed the most significant peaks in the range of 34.6-55.9 ppm for CH$_2$ carbon and 133.3-196.7 ppm for -NH=CH carbon which affirm the structures of Schff bases (3a-d) as shown in Table 3. For instance, new scaffold 3c showed different signals at different chemical shifts as shown in Fig 2.

Table 3: Important proton in $^{13}$C-NMR spectra of 2-thioxothiazolidine-4-one derivatives (3a-d)

<table>
<thead>
<tr>
<th>Compound</th>
<th>$^{13}$C-NMR chemical shifts ($\delta$, ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH$_2$</td>
</tr>
<tr>
<td>3a</td>
<td>35.3</td>
</tr>
<tr>
<td>3b</td>
<td>52.2</td>
</tr>
<tr>
<td>3c</td>
<td>34.6</td>
</tr>
<tr>
<td>3d</td>
<td>55.9</td>
</tr>
</tbody>
</table>

Figure 2: $^{13}$C-NMR of (E)-3-((3-(benzyloxy)-4-methoxybenzylidene)amino)-2-thioxothiazolidin-4-one (3c).

The studied thioxothiazolidine-4-one compounds were analyzed using Fourier Transform Infrared spectroscopy (FTIR) to identify what functional groups present in each particular derivative. FTIR spectra for all aromatic
thioxothiazolidin-4-one family exhibited the most important absorption bands around 1533-1597 cm\(^{-1}\) which belong to C=N stretching vibrations. These bands proved that the NH\(_2\) group of the parent primary amine was disappeared and replaced by C=N group of Schiff bases.

Besides, FTIR spectra also showed distinctive peaks around 3394-3527, 2904-2976, 1689-1739, 1533-1597, 1280-1373, and 1139-1167 cm\(^{-1}\) regions, corresponded to =C-H sp\(^2\), -C-H sp\(^3\), C=O, C=N, C-O, and C=S stretching, respectively. All of these distinguished bands are displayed in Table 4. In addition, Fig. 3 displays the FTIR spectrum for 3c derivative.

### Table 4: Infrared frequencies of the major functional groups (3a-d)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Important FTIR frequencies Frequency/wavelength (ν(_{\text{max}}) in cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>=C-H sp(^2) 3527 -C-H sp(^3) 2976 C=O 1724 1533 C=N 1280 C-O 1165 C=S 1162</td>
</tr>
<tr>
<td>3b</td>
<td>=C-H sp(^2) 3473 -C-H sp(^3) 2904 C=O 1689 1579 C=N 1373 C-O 1167 C=S 1167</td>
</tr>
<tr>
<td>3c</td>
<td>=C-H sp(^2) 3437 -C-H sp(^3) 2926 C=O 1739 1597 C=N 1280 C-O 1139 C=S 1139</td>
</tr>
<tr>
<td>3d</td>
<td>=C-H sp(^2) 3394 -C-H sp(^3) 2941 C=O 1722 1581 C=N 1336 C-O 1162 C=S 1162</td>
</tr>
</tbody>
</table>

Figure 3: FTIR of (E)-3-((3-(benzyloxy)-4-methoxybenzylidene) amino)-2-thioxothiazolidin-4-one (3c).

Thioxothiazolidin-4-one compounds which displayed better or comparable AChE inhibitory activities to that of the standard drug, Donepezil, were docked into the active site of AChE receptors. The orientation and binding interaction prototype to the main amino acid residues composing active site of AChE were investigated. The main active site residues as well as orientation of each active inhibitor inside the AChE active site gorse were displayed and their binding interactions were briefly described in the following sections to disclose the inhibitor-enzyme interaction mechanism.

New compound 3c showed better AChE inhibitory activities to that of the standard drug, Donepezil because of H-bond with ARG296 and Pi-Pi stacking with PHE338 as well as hydrophobic interactions which discloses that this compound can be accommodated efficiently inside the active site gorse and strongly attached with the receptor (AChE) enzyme, and the docking score of this compound (-10.572 kcal/mol) and compound 3a was displayed good activity because three of (H-bond) with ASP74, ARG296 and PHE3294 as well as Pi-Pi stacking with TYR341 with the docking score (-8.821 kcal/mol) as shown in Table 5.

### Table 5: 2D & 3D interaction inside active site (3a-3d)

<table>
<thead>
<tr>
<th>Comp. No.</th>
<th>Docking Score (kcal/mol)</th>
<th>3D Interaction</th>
<th>2D Interaction</th>
<th>Surrounding Amino Acids &amp;Interactions</th>
</tr>
</thead>
</table>

1924 Systematic Reviews in Pharmacy Vol 11, Issue 12, December 2020
CONCLUSION

Four rhodamine Schiff base scaffolds were successfully synthesised by single step with high yield 84-90% and were characterized by spectroscopic methods. All derivatives were docked into the active site of AChE enzyme and disclosed their binding model to cholinesterase enzyme; the synthesized compounds showed significant activity as AChE inhibitors in comparison with standard drug Donepezil.

Acknowledgments

All Authors would like to thank Mustansiriya University (www.uomustansiriyah.edu.iq) Baghdad-Iraq for its support in the present work.

REFERENCES


