The Biomarkers Associated With Myocardial Infarction

Suad Abasa Lafta 1, Awatif Hameed Issa * 2, Mazin Abed Hazza 3, Alaa Hussein Abed 1
1. University of Basrah- college of science/Iraq
2. Basrah for science and technology private university college/Iraq
Corresponding Author: awatifhissa@uobasrah.edu.iq

ABSTRACT
Introduction: Myocardial infarction (MI) is a major cause of morbidity and mortality worldwide. It is caused by a blockage of a coronary artery due to the accumulation of fat within its inner surface (atherosclerosis). Early diagnosis of MI has an important role in assisting clinicians in prompt planning for its treatment and thus reducing the number of its deaths. There are many biomarkers that used in the diagnosis of MI, especially in the first hours of chest pain attack. Cardiac enzymes, as cTnI, H-FABP, MYO, and CK-MB are released after heart muscle injury due to insufficient blood supply. In the past, it was based solely on the theory of lipids role in the etiology of atherosclerosis. Currently, inflammation has been stated to play an essential role in developing atherosclerosis. Monocytes, macrophages, lymphocytes and smooth muscle cells accumulates release many cytokines or inflammatory biomarkers. Therefore, many studies have emerged seeking to investigate the use of anti-inflammatory drugs to reduce the progression of the atherosclerosis process. The aim of the present study was to investigate the association of cardiac and inflammatory biomarkers to myocardial infarction and the correlation between inflammatory markers (CRP, Hs-CRP, IL-6 and PCT) and cardiac markers in MI patients.

Patients and Method: The present study included 20 MI patients and 20 healthy individuals (controls). In all the cases and controls, levels of cardiac and inflammatory biomarkers were measured by special kits from Hotgen company via phosphorous technology using UPT-3A converting phosphor immunological analyzer.

Results: The levels of both cardiac and inflammatory biomarkers were significantly increased in MI cases as compared to controls. Also, there was significant positive correlation between cardiac and inflammatory biomarkers in MI cases.

Conclusions: The positive correlation between cardiac and inflammatory biomarkers in MI indicates that inflammation occurs in myocardial infarction. Hence it is concluded that inflammatory biomarkers (CRP, Hs-CRP, IL-6 and PCT) can be markers of MI and can be used for diagnostic purposes in patients.

INTRODUCTION
Cardiovascular disease is the leading cause of death worldwide. The number of cardiovascular deaths is higher than cancer deaths and more than any other cause of death (AHA, 2019). The deaths reach up to 17.9 million annually, which is equal to 31% of all deaths (Wierer et al., 2018). In Iraq, the mortality rate due to cardiovascular diseases is about 33% of all deaths (Turk et al., 2018). Myocardial infarction is a type of coronary heart disease (CHD), that results from rupture of an arterial sclerosis plaque and a thrombus that works to block the coronary artery, which supply the heart, causing necrosis and death of part of the heart muscle (Shi et al., 2016; Rathore et al., 2017). Internationally, it was reported that at least one American develops myocardial infarction approximately every 40 minutes (AHA, 2019). In the past, it was based solely on the theory of lipids role in the etiology of atherosclerosis. Currently, inflammation has been stated to play an essential role in developing atherosclerosis. Monocytes, macrophages, lymphocytes and smooth muscle cells accumulates release many cytokines or inflammatory biomarkers (Beverly and Budoff, 2019). The underlying cause of a heart attack due to MI is atherosclerosis, which is caused by the development of layers of fatty deposits on the inner walls of the arteries (Amirfakhry, 2019). The development of these deposits leads to narrowing and gradual blockage of blood flow in the artery. It is a long-term disease that progresses slowly (Lacy et al., 2019).

Atherosclerosis is a chronic pathology of multiple modifiable risk factors (diabetes, hypertension, obesity, sedentary life, emotional stress, unhealthy food habit, smoking, and alcohol consumption) and non-modifiable factors (age, gender, race, and family history). It has been stated that chronic inflammation has a role in increasing the risk of cardiovascular disease, especially psoriatic arthritis and rheumatoid arthritis (Groh et al., 2018). Moreover, the statement of bacterial and viral infections participation in the process of atherosclerosis development, justifies mentioning that targeting infections with antibiotics can be promising as being a part of a protocol option to reduce atherosclerosis (Ridler et al., 2020; Moriya, 2019).

Measuring biomarkers levels in the patient’s serum is a method for decision-making and can predict the severity of atherosclerosis (Martinez et al., 2020). Cardiac troponin I (cTnI) is an extremely sensitive biomarker in diagnosing and determining the severity of coronary heart disease, and highly specific in excluding the disease. It gives more predictive values than the stress ECG (Aydin et al., 2019; Anwar et al., 2016). Creatine kinase –Myocardial Band (CK-MB) is an enzyme found in the heart muscle, which is an important biomarker for the diagnosis of myocardial infarction. It is more specific than other heart enzymes and considered the golden standard for diagnosing myocardial infarction. (Mytili and Malathi, 2015; Aydin et al., 2019; Anwar et al., 2016).

D-dime is a promising and important vital indicator for identifying blood clots, which molecules result from the breakdown of fibrin in the blood vessels (Zhang et al., 2019).
N-terminal pro-B-type natriuretic peptide (NT-proBNP) is a diagnostic marker for detecting heart failure (Eriksson et al., 2019; Pan et al., 2017). C-reactive protein (CRP) is a biomarker secreted by the liver after being stimulated by cytokines in cases of infections, and can be used to assess the risk of cardiovascular disease; however, it has a low specificity (Zhu et al., 2018). High sensitivity-CRP (Hs-CRP) is a technique developed to detect very low levels of CRP to more accurately determine the existence of the inflammation process compared to CRP (Peluso et al., 2019). Procalcitonin (PCT) hormone is a peptide consists of 116 amino acids with low molecular weight, approximately 13 kDa (Ichihara et al., 2016) (Jiao et al., 2015). The proportion of the hormone is 0.033 ng/ml and rises to 5,000 ng/ml in cases of bacterial infection only, but it does not rise in viral infections (Bradford, 2019).

Interlukine-6 (IL-6) is a type of cytokines, which has hormone-like properties. It has anti-inflammatory properties, has a role in innate and adaptive immunity, causes fever during infection, and is secreted by monocytes, macrophage devoured in response to other cytokines such as IL-11, TNF. Its function is to regulate acute phase proteins and chronic infections, and its levels increase in patients with vascular diseases compared to healthy people (Yu et al., 2017; Nassem et al., 2016).

Patients and Method

Out of a total of 20 patients, 5 (25%) were females and 15 (75%) males, with a mean age of 55.25± 12.53 (range of 35-80) years, participated in this study. All patients were diagnosed as having MI. A total of 20 healthy individuals enrolled in this study as a control group; their age and gender were matched with the patients group. Cancer and hepatitis patients were excluded from this study. Data were collected from the cardiac center in Al-Sadr Teaching Hospital via specially structured questionnaire. This included sociodemographic and health data. The study took place during the period from 13 October 2019 to 27 October 2020.

Venous blood was collected from patients and controls in EDTA, sodium citrate and gel tube. Centrifugation processes were being done to obtain serum and plasma by Rotofix 32 A at a speed of 3000 cycles per minute for 10 minutes. Then cardiac and inflammatory biomarker tests were done numbers and averages, and quantitative variables are expressed as a mean± SD. A comparison by special kits from Hotgen company via phosphorous technology using UPT-3A converting phosphor immunological analyzer.

All statistical analyzes were performed using Statistical Package of Social Sciences (SPSS) version 23. Categorical variables are expressed as percentages, was made between patients and the control groups using chi-square test or Fisher’s exact test qualitative variables, and Mann-Whitney test for quantitative nonparametric variables. Spearman’s test was used to find the correlation between the nonparametric quantitative variables. The level of significance was set at (P < 0.05).

Results

A total of 40 individuals were included in this study. Of those, 20 were cases of MI and 20 were controls. Table (1) shows the levels of cardiac and inflammatory markers in cases and controls. The levels of these markers were statistically significantly (p<0.05) increased in MI cases as compared to controls.

Table (2) and figure (1) show the correlation between cardiac and inflammatory markers in MI cases. Positive correlations were found between cardiac and inflammatory markers in MI cases. Serum CRP levels were found to be strongly positively correlated with CK-MB, H-FABP, MYO and cTnI (r=0.682, 0.653, 0.613 and 0.566, respectively, in a significance level of p<0.01).

A strong positive correlation was found between serum PCT levels with NT-proBNP, MYO and H-FABP (r= 0.644, 0.567 and 0.501 respectively, in a significance level of p<0.01) in MI patients.

On the other hand, we found medium significant correlations of Serum CRP levels with D-dimer and NT-proBNP (r = 0.478, 0.41 respectively, both p<0.013); Hs-CRP with NT-proBNP (r=0.455); PCT with (cTnl, CK-MB and D-dimer), and IL-6 with (cTnl, H-FABP, NT-proBNP, CK-MB and D-dimer).

Finally, a small correlation of IL-6 with MYO (r=0.284).

<table>
<thead>
<tr>
<th>Table (1): The differences in the levels of cardiac and inflammatory biomarkers in MI cases and controls.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomarker</td>
</tr>
<tr>
<td>IL-6 (pg/ml)</td>
</tr>
<tr>
<td><7</td>
</tr>
<tr>
<td>≥7</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
</tr>
<tr>
<td><8</td>
</tr>
<tr>
<td>≥8</td>
</tr>
<tr>
<td>hs-CRP (mg/L)</td>
</tr>
<tr>
<td><1</td>
</tr>
<tr>
<td>≥1</td>
</tr>
<tr>
<td>PCT(ng/ml)</td>
</tr>
<tr>
<td><0.5</td>
</tr>
<tr>
<td>≥0.5</td>
</tr>
<tr>
<td>H-FABP (ng/ml)</td>
</tr>
<tr>
<td><7</td>
</tr>
</tbody>
</table>
Table (2): The correlation coefficient, r-values, between cardiac and inflammatory biomarkers in patients of MI

<table>
<thead>
<tr>
<th>Inflammatory Biomarkers</th>
<th>H-FABP</th>
<th>MYO</th>
<th>cTnI</th>
<th>CK-MB</th>
<th>NT-proBNP</th>
<th>D-dimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>0.384*</td>
<td>0.248</td>
<td>0.379*</td>
<td>0.331*</td>
<td>0.402*</td>
<td>0.404*</td>
</tr>
<tr>
<td>CRP</td>
<td>0.653**</td>
<td>0.613**</td>
<td>0.566**</td>
<td>0.682**</td>
<td>0.413**</td>
<td>0.478**</td>
</tr>
<tr>
<td>HS-CRP</td>
<td>0.662**</td>
<td>0.596**</td>
<td>0.593**</td>
<td>0.767**</td>
<td>0.455**</td>
<td>0.548**</td>
</tr>
<tr>
<td>PCT</td>
<td>0.501**</td>
<td>0.567**</td>
<td>0.452**</td>
<td>0.418**</td>
<td>0.644**</td>
<td>0.431**</td>
</tr>
</tbody>
</table>

* significant (p<0.05)
** highly significant (p<0.01)
Figure (1): The correlation between CRP and cardiac biomarkers in MI cases and control groups.
The Biomarkers Associated With Myocardial Infarction

Figure (2): The correlation between Hs-CRP and cardiac biomarkers in MI cases and control groups.
Figure (3): The correlation between PCT and cardiac biomarkers in MI cases and control groups.
The Biomarkers Associated With Myocardial Infarction

DISCUSSION

In the present study, the association of cardiac markers (cTnl, H-FABP, MYO, CK-MB, NT-proBNP and D-dimer) and inflammatory markers (CRP, Hs-CRP, IL-6 and PCT) with MI was assessed and the correlation between the two types of markers was tested. We found significantly increased levels of all cardiac and inflammatory biomarkers in MI cases compared to controls (p<0.05), which is mostly consistent with the results of several previous studies that documented a role for inflammation in the development of atherosclerosis. Moreover, we found significant correlations between the markers from the two groups.

Cardiac Markers:

H-FABP is mainly found in the heart muscle; and in case of heart muscle cells, it is released early to the blood. An elevated level of H-FABP can be tested in 30 minutes after the injury, reaches its peak in up to 8 hours and decreases to its original level after 24 hours (Mytili and Malathi, 2015). This goes with the finding of the current study, which found that it is extremely significantly statistically associated with MI when compared to control individuals. Rathore et al., (2017) in their study observed significant higher mean levels of cardiac markers MYO activity in AMI cases when compared to that of controls, which agrees the results of this study. Again it is one of the early elevated markers in the blood after the onset of injury to the heart muscle, reaches its peak in up to 12 hours and declines to its original level very shortly. However, it lacks specificity to the heart tissue. That is why its level is recommended to be tested in conjunction with the cTnl or CK-MB (Mytili and Malathi, 2015). Singh et al., (2016) concluded that a combination of cTnl activity was sufficient for the early diagnosis of acute myocardial infarction (AMI). It is specific for the myocardium, which has made it an excellent cardiac marker of injury. It starts to increase in up to 8 hours post heart muscle injury, (Mytili and Malathi, 2015). It is a highly sensitive test for diagnosing and predicting coronary artery disease and plays a considerable role in the process of risk stratification (Tibaut et al., 2019). These facts can explain the results of our study, when it was found to be extremely associated to MI.

Rathore et al., (2017) documented higher levels of CK-MB in AMI patients when compared to controls, which agrees the results of this study. It is not measured as a single diagnostic indicator, but in conjunction with the troponins or MYO (Mytili and Malathi, 2015). Although, previously, the total CK was used to assess myocardial infarction. Mytili and Malathi, (2015) and Singh et al., (2002) concluded that a CK-MB activity can be sufficient for the early diagnosis of acute myocardial infarction (AMI).

Eriksson et al., (2019) stated that NT-proBNP has a prognostic value in patients with heart failure. Although, NT-proBNP was found to be significantly associated with MI, and previous research has shown that its elevation can be a predictive marker of death and heart failure, it was stated that it cannot be used for the diagnosis of AMI (Mytili and Malathi, 2015).

D-dimer was shown to be associated with the extent of coronary heart disease, which agrees the results of this study, but it has a low specificity; therefore, all other fibrinolysis conditions should be excluded when used as a risk marker for atherosclerosis (Tibaut et al., 2019).

Inflammatory Markers

IL-6 has a major role in the recruitment and activation of inflammatory cells in response to ischemia (Mytili and Malathi, 2015). Wennberg et al., (2012) documented an association between IL-6 and MI risks; and Filardo et al., (2015) reported that seropositivity of IL-6 may be predictive of atherosclerotic cardiovascular risk. Furthermore, it is considered as one of the important tools for assessing the risk of coronary atherosclerosis, which supports the results of this study (Ridker et al., 2020).

(Sesani et al., 2016) and (Rathore et al., 2017), who mention that CRP is the most frequent marker of inflammation, which its relation to MI has been studied extensively in recent years. In agreement with the present study findings, Wennberg et al., (2012) documented an association of inflammatory markers, such as CRP, with MI risks. Moreover, it was stated that these markers are of considerable importance in the pathophysiology of the disease. Ahmed et al., (2017) mentioned in their study that it is of benefit to measure serum levels of PCT and CRP in diagnosing cardiovascular complications in type 2 diabetic patients. Our study results agree the results of Baruah et al., (2012) in their study showed that the role and importance of the CRP, contributes to provide a predictive value in the diagnosis of AMI. Also, it sensitivity and specificity (Mytili and Malathi, 2015).

When Hs-CRP is considered, it has been documented that screening techniques have been developed, to detect it, are used to assess heart disease risk associated with infections (Limijadi, et al, 2020). Recent studies have also...
demonstrated the ability of HS-CRP to predict the presence of atherosclerotic plaques and it is an important tool that can help physicians in putting immediate treatment plans (Ammirati et al., 2015; Macfadyen et al., 2017), as it was found that it has a major role in improving the risk stratification of CAD (Chong et al., 2020; Fonseca and Izar, 2016; Koenig, 2013). The mechanism has been stated to link high serum HS-CRP levels to the process of inflammation of the myocardium and higher levels of HS-CRP are correlated with the severity of the inflammation of the injured myocardium (Yao, H. C. et al., 2013). In addition, Filardo et al., (2015) reported that seropositivity of HS-CRP may be predictive of atherosclerotic cardiovascular risk. All the above support the results of our study, when we found that Hs-CRP is associated with MI and is positively correlated to the cardiac biomarkers. This study results agreed the results of (Kafkas et al., 2008) who documented that PCT was significantly associated with MI. Moreover, (ENTürk et al., 2007) and (Özbay et al., 2020) who recommended its use in assessing the prognosis and severity of coronary artery disease.

LIMITATIONS
Researchers find it is crucial to point out the following limitations of the study, without which, the results would be better conclusive:
1. The time of taking blood samples to be tested was variable among patients and lied between 5-12 hours after being admitted to the coronary care unit in the hospital. This was a bit wide range for the levels of markers tested. That is to say, the levels among patients do not represent close/similar time period after the MI attack. However, in spite of this, the differences among markers levels were statistically extremely significant, and the wide variability in post attack period could not mask the significance.
2. The results based on a single center only, which could lead to selection bias.
3. The sample size was too small to produce conclusive results. That was because of the restriction imposed due to the outbreak of COVID-19. However, the result was not different from other studies worldwide.

CONCLUSIONS
The current results found increased levels of inflammatory markers (CRP, HS-CRP, IL-6 and PCT) along with cardiac markers (cTnI, H-FABP, MYO, CK-MB, NT-proBNP and D-dimer) and significant positive correlations among the markers of the two groups in MI patients. It indicates that there was significant inflammatory process associated with myocardial infarction.

REFERENCES

cardiac surgery patients. Experimental and therapeutic medicine, 9 (3), 1051-1057.
41. Yao, H. C. et al. (2013). Correlation between serum high-mobility group box-1 levels and high-sensitivity C-reactive protein and troponin I in patients with coronary artery disease. Experimental and therapeutic medicine, 6(1), 121-124.