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ABSTRACT
The main axisymmetric geometrical models of erythrocyte’s
surface are considered. Usually the axisymmetric models
have cross-sections as ellipses, Cassinian Ovals, polynomial
curves. Such geometrical models are often based of optical
models and applied for the description of 3D erythrocyte’s
shape in scanning flow cytometry. We are suggested to use
more strict and complicated Perseus curves for the
description of cross-sections of the erythrocyte. The formulas
for the volume, surface and cross-section areas in the
proposed erythrocyte’s model of Perseus curves are obtained.
We are revealed that the Perseus curves are approximated to
experimental polynomial curves more exact than the
Cassinian Ovals. We are numerically compared the phase
function of light scattering by the individual erythrocyte in
the Rayleigh-Gans-Debye approximation for all main optical
models of the red blood cell. The good agreement is
demonstrated for the phase function of light scattering by the
erythrocyte for the Perseus curves’ model in comparison with
polynomial models in the Rayleigh-Gans-Debye
approximation.

Keywords: light scattering, red blood cell (corpuscle),
scanning flow cytometry.

INTRODUCTION
IMPORTANCE OF THE PROBLEM
The scattering of electromagnetic waves by dielectric
particles is an important problem for a variety of
applications ranging from particle sizing and remote
sensing, astrophysics to radar meteorology and biological
sciences. So, in the area of medical diagnostics,
understanding how a laser or light beam interacts with
blood suspensions or a whole-blood medium is of
paramount importance in quantifying the inspection process
of precision in many commercial devices and experimental
setups that are used widely for in vivo or in vitro blood
measurements [1 - 4].

FRAMEWORK OF THE PROBLEM
Many colloidal, biological and aerosol particles of great
interest in nature are such that their refractive index m ,
relative to the surrounding medium is sufficiently close to
unity [1, 2]. The particles satisfying the condition

1|1| m (where inm = is its relative
refractive index) are generally termed as optically “soft”
particles. Otherwise, the assumption of “soft” particles
suggests that the refraction and reflection of the rays
passing through the particle are negligible and that the
absorption is not very strong. Note that for red incident

light nm650= (where  is the wavelength of light)

the real part of relative refractive index of an erythrocyte
n is varied from 1.04 to 1.05 and the imaginary part  is
varied from 0.001 to 0.007 (see [3, 5]). Therefore, the alone
erythrocyte is often assumed as an optically “soft” particle.
If light scattering particles are optically “soft” then the
Rayleigh–Gans–Debye (RGD) [1, 3, 6], Anomalous
Diffraction (AD), or Wentzel–Kramers–Brillouin (WKB)
approximations can be applied [3, 5, 7]. The RGD
approximation (known as the first Born approximation in

quantum mechanics) is valid when the phase shift  is

much smaller compared with unity 1 , where we use

so-called “phase shift” of central ray 

( |1|2=  mka , where a is the longest dimension

through the particle, /2=k is the wavenumber).
The application of the AD approximation is restricted with

the phase shift  greater than unity 1> . The range of
validity of the WKB approximation is included ranges of
validity of both the RGD and AD approximations [5, 7].
But in all declared approximations we need to know the
correct size, surface, volume of particle (or erythrocytes).

THE PURPOSE OF RESEARCH
The purpose of this research is to consider main
geometrical models of erythrocyte's surface and choose
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more adequate and suitable for effective calculation of light
scattering characteristics.

GEOMETRICAL MODELS OF ERYTHROCYTE'S
SURFACE
The main object of the immense majority of medical
diagnostics is a erythrocyte (or red blood cell (RBC), red
blood corpuscle). The shape of RBC is researched and

described earlier in the numerous papers [8 - 13]. The
profile (or the axial cross-section) of RBC is shown in

Figure 1. Usually, RBCs measure from 6.6 to 8.0 μm in
diameter, however, cells with a diameter greater than 9
μm (macrocytes) or less than 6 μm (microcytes) have
been observed. Some average parameters of normal RBC
are wrote in Table 1.

Table 1. Average geometric parameters of normal Red Blood Cells

Source
Diameter

D, μm
Minimal
Thickness,
μm

Maximal
Thickness,
μm

Surface
Area,

2μm

Volume,
3μm

Sphericity
Index

Ponder[11] 8.50 1.00 2.40 152.00 112.00 0.740
Skalak[9] 8.40 0.85 2.04 141.61 91.52 0.694
Tchijevsky[8] 7.50 0.85 1.875 108.68 62.96 0.704
Fung[11] 7.65 1.44 2.84 129.95 97.91 0.792
Evans[10] 7.82 0.81 2.58 135.00 94.00 0.742
Gilev[14] 6.42 1.90 3.03 101.10 77.80 0.80

The difference in diameters of normal RBCs is explained
by their range in age and other reasons.
The well-known average polynomial curve have been
obtained by Skalak in [9]:

    0.01384080.2842920.013069310.86=, 242  RRR xxxRRxZSka
, (1)

where RxxR /= and R is a average radius of RBC.

Figure 1. The profile (or the axial cross-section) of erythrocyte (A) with main parameters such as the radius R , the half of

maximal Zmax , minimal thickness Zmin , the X position of Zmax (or
)( maxZX
) and the coordinate system for the

task of light scattering (B) (where the unit vectors s

and i

are aligned with the light scattering and propagation directions,

respectively). But in earlier work of Tchijevsky [8] we are found such polynomial curve
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. (2)
The third average polynomial curve proposed by Fung [11] and modified in [15, 16] can be written as

   ,0.85791.52620.15831=, 422
RRR xxxRRxZFun  (3)
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where  is an aspect ratio of maximum thickness and diameter, in [15] is equal to 0.65, in [16] is equal to 0.52. For 0.65=
we have

   422 0.5576350.992030.1028951=, RRR xxxRRxZFun 
The last modification of the polynomial

Fung's curve [11] we found in [17]:

   422 0.7741.0350.1871=, RRR xxxRRxZGil  . (4)
The transformation of equations (1) and (2) yield us next expressions for the comparison of polynomial curves

   422 5.820150.9884980.1011761, RRR xxxRRxZSka 
, (5)

   422 3.626780.933750.1251, RRR xxxRRxZChi 
. (6)

The marked difference in the values is noted for expansion's terms of forth degree between equations (5) and (6).
Of course, the Cassinian Ovals (also termed the Cassinian Oval) are useful and convenient models of erythrocyte's shape [12, 13,
18], because they have two parameters a and c for changing the shape of erythrocyte under different pathological conditions

)2<<( aca .
In Cartesian coordinates we can write [13]
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, (7)
or in polar coordinates

    12cos2cos=),,( 2
4







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,

where  2<<0 .
The Perseus Curves (or the spiric sections of Perseus) are more perfect models of erythrocyte's shape than the Cassinian Ovals
but they have already three parameters p, q, r [21, 22]. The Perseus Curves include the Cassinian Ovals as a private case. Such
more complicated model is necessary, for instance, see the adding factor (third “unusual” parameter) in [12] for correction of the
Cassinian Ovals and best approximation with experimental results or parametric equations in [23, 24, 25].
The Perseus Curves in Cartesian coordinates are defined by
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, (8)
in polar coordinates

    12cos2cos22cos=,,, 2
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Note when the

condition rp = is true then the Perseus Curves change into the Cassinian Ovals. Using formulas  2222= qrpP  ,

 2222= rpqQ  ,    2222 )()(= rqprqpR  , we can transform from the equation (8) of Perseus
Curves to the parametric equations' notation in [23].
Besides, we can apply the simple model proposed by Borovoi A.G. in [20] on the basis of Roses or Grandi's Curves. In polar
coordinates we have an upper or bottom (sign is plus or minus respectively) half of vertically located erythrocyte [20]

   babaBor   5sin=,, , (9)

where  <<0 and R=a+b is a maximal radius of RBC,
after RBC's rotation from vertical to the horizontal position we obtain from (9)
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and in spherical coordinates (  ,,r ) [20] write as

  .sin=,,, 5 babarBor  (11)
Also the parametric function for the Borovoi's model can be written as

    ,= 2
5

225322 zxbaxzx 
where x>0.
We summarize known geometric parameters of RBC (see also Figure 1) for the Cassinian Ovals [13, 18] and new formulas

obtained by author for the Perseus Curves (provided that qp  and q-r<p<q+r) in the next collated Table 2. Obviously, the
volume, surface and the cross-section areas of the Perseus Curves when p=r change into corresponding formulas of the
Cassinian Ovals (see Table 2).

For the simple transition from formulas of the Perseus Curves to the Cassinian Ovals' notations use expressions a
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Table 2. The geometric parameters of erythrocyte for the Perseus Curves and Cassinian Ovals
Parameter Perseus Curves Cassinian Ovals [13, 18]
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Cross-Section Area,

SCS
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Notations ),,(),,(),,( kkEkF   are incomplete elliptic integrals of the first, second, third kinds respectively and
)/2,(=)(),/2,(=)( kEkEkFkK  are complete elliptic integrals of the first, second kinds respectively [19].

NUMERICAL RESULTS AND DISCUSSION
COMPARISON OF THE MODELS OF
ERYTHROCYTE
GEOMETRICAL PROFILE
Let us compare all these models under given conditions, for
known three parameters: the diameter RD 2= , the

minimal minZ2
and maximal thickness maxZ2

of RBC.

Of course, all models (except the Cassinian Ovals, the
Perseus Curves and the Borovoi's model) will be multiplied
by individual aspect ratio coefficient  for the strict

equality of given minZ .
Using equation (7), for the parameters of the Cassinian
Ovals we obtain

2
=,

2
=

2222
minmin ZR

a
ZR

c


. (12)
From equation (8) for the parameters of the Perseus Curves we find
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For polynomial geometrical profiles of RBC with )(xZ [11] the volume was calculated as

 dxxxZRV
R

04=)( 
, (14)

the surface area was computed as
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, (15)
the sphericity index was computed as

)(
)(36

=)(
3 2

RSA
RV

RSI


. (16)
The numerical results of geometrical profiles are shown in Figure 2 for all described models with common parameters

mZmin 0.385=
,

mZmax 0.91=
,

mRXmax 3.75==
.
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Figure 2. The comparison of geometrical profiles for the models of erythrocyte calculated by means of equations:
1 - Eq.(8) Perseus Curves, 2 - Eq.(7) Cassinian Ovals, 3 -
Eq.(3) Yurkin[15], 4 - Eq.(4) Gilev[17],
5 - Eq.(1) Skalak [9], 6 - Eq.(2) Tchijevsky [8], 7 - Eq.(10)
Borovoi [20] with parameters

mZmin 0.385= , mZmax 0.91= ,
mRXmax 3.75== .

The sphericity index, the volume and the surface area of

RBC calculated for given parameters
RZZ maxmin ,,

in

the model of the Cassinian Ovals and others are written in
Table 3.
Moreover, note that the calculations in the Cassinian Ovals'
model with equation (7) yield significantly larger value of

mZmax 1.35 than one in other profiles for RBC with

given minZ and R (see Figure 2).
mZmin 0.385=

,
mZmax 0.91=

,
mRXmax 3.75==

.

Table 3. The surface area, the volume, the sphericity index calculated in the models of erythrocyte with parameters

Model Surface Area,
2μm

Volume,
3μm Sphericity Index Aspect Ratio


Perseus Curves 110.16 64.69 0.707 -
Cassinian Ovals 124.48 94.21 0.804 -
Yurkin [15] 122.73 82.05 0.744 0.649
Gilev[14] 102.38 51.43 0.653 0.549
Skalak [9] 112.49 66.13 0.703 0.873
Tchijevsky [8] 105.96 55.39 0.663 0.821
Borovoi [20] 111.76 72.79 0.754 -

LIGHT SCATTERING AMPLITUDE AND PHASE
FUNCTION
Let the symmetry axis of a static homogeneous erythrocyte

of height maxZ2 and radius R be aligned with the Z axis
and a plane electromagnetic wave be incident in the ZOX

plane of the Cartesian coordinate system at the angle i to
the Z axis (see Figure 1 (B)):

)],cossin([exp=)( iiii zxikerE  

(17)

where /2=k is the wavenumber and the unit vector

ie


is aligned to the incident-wave polarization.
Forth we use the light-scattering amplitude for the RGD
approximation [3 - 6] in scalar form

    ,exp),(1
4

=),( 2
2

dVrkimTm
Pk

f siV


 




(18)

where the unit vectors s

and i

are aligned with the light

scattering and propagation directions, respectively,

)(= sikks


 , 2
sin2= kks



, ),(= imTT  is
the Fresnel transmission coefficient, where

1)2/(=/2),( mmT  ,  is the angle between

vectors i

and s

,  is the angle between axis Z and

vector sk

,

  iessP  =
(for brief expression

suppose that in a scalar form
1=P
) and r


is the radius-

vector of a point inside the particle.

So, the phase function [or element of scattering matrix 11f ]
for natural incident light (unpolarized or arbitrary polarized

light) provided that 0= is calculated by a formula [1, 7]
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,
2
cos1,0)(=,0)(

2
22

11
 fkf

(19)

where
2),( f
is a square of modulus of light

scattering amplitude.

Further the phase function of light scattering is normalized
on the value in a forward direction.
The logarithms of normalized phase functions

[0,0]),0]/[( 111110 ffLog 
for the incident light

perpendicular and along the axis of RBC’s symmetry
calculated by means of models in the RGD approximation
such as the Perseus Curves, the Cassinian Ovals and others
are shown in Figure 3. Note

Figure 3. The logarithm of normalized phase function [0,0]),0]/[( 111110 ffLog  vs. scattering angle  in the RGD

approximation with relative refractive index 0.00011.058= im  and parameters
mZmin 0.385=
,

mZmax 0.91=
,

mRXmax 3.75==
for incident light along (A) and perpendicular (B) to the axis of erythrocyte’s symmetry calculated by

means of model equations:
1 - Eq.(8) Perseus Curves, 2 - Eq.(7) Cassinian Ovals, 3 -
Eq.(3) Yurkin [15], 4 - Eq.(4) Gilev[17],
5 - Eq.(1) Skalak [9], 6 - Eq.(2) Tchijevsky [8], 7 - Eq.(10)
Borovoi [20].

That the normalized phase functions of RBC calculated
with equation (3) from Yurkin [15] and the Cassinian Ovals
are significant differed from other models in the ranges of
scattering angles near 90 and 180 degrees (see Fig. 3).
Obviously, such behavior of phase functions of RBC is
caused by the Cassinian Ovals and the equation (3) of
Yurkin [15] have more abrupt geometric profiles than
others (see Figure 2).

CONCLUSIONS
The axisymmetric geometrical models of erythrocyte's
surface are considered. We are proposed to use more strict
and complicated Perseus curves for the description of
cross-sections of the RBC. The expressions for the volume,
the surface and cross-section areas in the erythrocyte's
model of Perseus curves are obtained. The formulas for the
surface and cross-section areas of the Perseus curves'
model are included elliptic integrals. After the numerical
comparison of geometrical profiles and parameters we are

confirmed that the Perseus curves are approximated to
experimental polynomial curves more exact than the
Cassinian Ovals. We are numerically compared the phase
functions of light scattering by the individual erythrocyte in
the RGD approximation for scrutinized models of red blood
cell. The better agreement is demonstrated for the phase
function of light scattering by the erythrocyte in the RGD
approximation for the Perseus curves' model than the
Cassinian Ovals in comparison with other models.
Over a long-term perspective the numerical comparison of
the phase functions of light scattering in the RGD
approximation may be generalized for the WKB
approximation too.
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