
Sys Rev Pharm 2020;11(7):319-323                              
A multifaceted review journal in the field of pharmacy                                                   

 

319                                                                         Systematic Reviews in Pharmacy                                  Vol 11, Issue 7, July-Aug 2020 

The Synthesis and Characterisation of a New Tröger’s 

Base Content Methoxy Group 
 
Sadiq A. Karim1, Mohammed H. Said2, Jinan A. Abd3, Asim A. Balakit4, Ayad F. Alkaim5  
 
1,2,5Chemistry department, College of Science for women, University of Babylon, Iraq.  
3Department of Laser physics, College of Science for women, University of Babylon, Iraq.  
4Pharmaceutical Chemistry department, College of Pharmacy, University of Babylon, Iraq.  

 

Corresponding author: sadiqkarim77@gmail.com 

 

 

ABSTRACT 
Five Tröger’s base (TB) molecules were synthesized by reaction aniline’s 
derivatives which content a methoxy group with a supplement of methylene 
(dimethoxymethane (DMM)) in present trifluoroacetic acid (TFA) as a solvent 
and catalyst. This method afforded a good ratio product between 62% to 99%, 
all products were conforming by FTIR, HRMs, 1HNMR, 13CNMR, and XRD. 
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INTRODUCTION 
The first Tröger’s base was create in 1887 by Julius Tröger 
during his Ph.D. studied, this compound was called Tröger 
base 1 (TB1) which from the condensation of methanal 
with 4-aminotoluene in HCl-catalysed media.1 The TB1 
(2,8-dimethyl-6H,12H-5,11-
methanodibenzo[b,f][1,5]diazocine) was conformed 
structure through chemical reaction by M. A. Spielman in 
1935,2 and then later through single crystal   X-ray 
diffraction by S. B. Larson and C. S. Wilcox.3 The TB was 
described as "fascinating molecules''.4-7  that because their 
structure of TB has a chiral 1,5-diazocine bridge locks 
contains double stereogenic nitrogen atoms in its rigid 
twisted V-shaped,8-10 as well as have two enantiomers of 
Tröger’s base exists at room temperature.11-12  A many of 
functionalised  enantiomers have been synthesized from 
suitably substituted amino-aryls and these compounds 
have been used in applications such as estimation of 
molecular,10,13-19 Deoxyribonucleic acid (DNA) binding 
studies,20-25 catalysis as molecules or polymers,26-31 
Subsequently, several Tröger bases  polymer synthesised 
as thermal stability polymer,32 as ladder polymers for 
potential applications after casting membranes to gas 
separation33-39 or as network polymers.40 In this work 
several analogues Tröger base substituted a methoxy 
group were formed and conformed by FTIR, 1H-NMR, 
13CNMR, Mass and XRD. 
 
Experimental 
General Procedure 
An aniline derivative substituted a methoxy group was 
dissolved or suspended into dimethoxymethane (DMM) 
and the mixture was cooled in an ice bath. Trifluoroacetic 
acid (TFA) was added dropwise and the mixture could stir 
at room temperature for 24h. The mixture was slowly 
poured into aqueous ammonium hydroxide solution and 
stirred vigorously for 2 h during which a solid was formed. 
The solid was collected by filtration, washed with water 
and hexane until the washings were clear. The crude 
product was subjected to column chromatography (eluent: 
8:2 hexane: dichloromethane) and the solvents were 
removed under vacuum. The product as a fine powder was 

collected by filtration and was dried in a vacuum oven at 
50 °C for 2 h. 
 
1- Synthesis of 2,9-Dimethoxy-6H,12H-5,11-
methanodibenzo[b,f](1,5)diazocine (TB-OCH3-1) 
General procedure was followed using m-anisidine (9.1 
ml, 10.00 g, 81.20 mmol), DMM (10.8 ml, 9.269 g, 121.80 
mmol) and TFA (40 ml) to afforded (20.02 g, 87.33 %) as a 
brown powder. Mp = 193 - 195 °C; FTIR (solid, cm-1) = 
3206 cm-1 (Ar-H), 2944 & 2839 cm-1 (asy. str. & sy. str. of 
OCH3 & CH2 bridge), 1666, 1618 and 1498 cm-1 (C=C of Ar), 
1325 cm-1(Ar-N), 1197 cm-1 (Caliph-N); 1H NMR (500 MHz, 
CDCl3) δH (ppm) = 7.88-6.93 (m, 6H, ArH), 4.45 (d, J = 16.90 
Hz, 2H, alipha), 4.15 (s, 2H, alipha), 3.90 (d, J = 16.90 Hz, 
2H, alipha), 3.70 (s, 6H, OCH3); 13C NMR (126 MHz, CDCl3) 
δc (ppm) = 156.3 (Ar), 147.0(Ar), 131.7(Ar), 120.0(Ar), 
103.5(Ar), 99.8(Ar), 67.4(N-Calipha-N), 60.7(Ar-Calipha-N), 
56.2(OCH3); HRMS (EI, m\z): calculated 282.1362, found 
282.1359 (M+).    
 
2- Synthesis of 1,4,7,10-Tetramethoxy-6H,12H-5,11-
methanodibenzo [b, f] (1,5) diazocine (TB-OCH3-2) 
General procedure was followed using 2,5-
dimethoxyaniline (10.00 g, 65.28 mmol), DMM (8.7 ml, 
7.452 g, 97.92 mmol) and TFA (40 ml) to afforded (15.49 
g, 69.31 %) as a deep brown powder. Mp = 136 - 138 °C; 
FTIR (solid, cm-1) = 2942, 2837, (asy. str. & sy. str. of OCH3 

& CH2 bridge), 1688, 1626 & 1508 (C=C of Ar), 1350 cm-

1(Ar-N), 1200 cm-1 (Calipha-N); 1H NMR (500 MHz, CDCl3) δH 
(ppm) = 7.30 (d, J = 9.9 Hz, 2H, Ar), 6.97 (d, J = 9.9 Hz, 2H, 
Ar), 4.55 (d, J = 13.0 Hz, 2H, alipha), 4.02 (s, 2H, alipha), 
3.78 (d, J = 13. 0 Hz, 2H, alipha), 3.72 (s, 12H, OCH3); 13C 
NMR (126 MHz, CDCl3) δc (ppm) = 152.1 (Ar), 140.1(Ar), 
131.2(Ar), 115.2(Ar), 108.6(Ar), 104.8(Ar), 67.5(N-Calipha-
N), 56.2(OCH3), 50.7(Ar-Caliph-N); HRMS (EI, m\z): 
calculated 342.1574, found 342.1562 (M+). 
 
3- Synthesis of 1,3,8,10-Teramethoxy-6H,12H-5,11-
methanodibenzo [b, f] (1,5) diazocine (TB-OCH3-3) 
General procedure was followed using 2,4-
dimethoxyaniline (9.3 ml, 10.00 g, 65.28 mmol), DMM (8.7 
ml, 7.452 g, 97.92 mmol) and TFA (40 ml) to afforded 
(14.02 g, 62.72 %) as a brown powder. Mp = 94 - 96 °C; 
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FTIR (solid, cm-1) =2935, 2843, (asy. str. & sy. str. of OCH3 

& CH2 bridge), 1690, 1637 & 1508 (C=C of Ar), 1450 cm-

1(Ar-N), 1200 cm-1 (Caliphatic-N); 1H NMR (500 MHz, CDCl3) 
δH (ppm) = 6.03 (Ar), 5.90 (Ar), 4.65 (d, J = 12.4 Hz, 2H, 
alipha), 4.32 (s, 2H, alipha), 4.00 (d, J = 12.4 Hz, 2H, alipha), 
3.75 (s, 12H, OCH3); 13C NMR (126 MHz, CDCl3) δc (ppm) = 
150.1 (Ar), 145.8(Ar), 125.2(Ar), 123.9(Ar), 107.7(Ar), 
100.2(Ar), 67.6(N-Calipha-N), 60.7(Ar-Caliph-N), 56.2(OCH3);  
HRMS (EI, m\z): calculated 342.1574, found 342.1565 
(M+). 
 
4-1,10-Dimethoxy-4,7-dimethyl-6H,12H-5,11-
methanodibenzo [b, f](1,5)diazocine (TB-OCH3-4) 
General procedure was followed using 2-methoxy-5-
methylaniline (10.00 g, 72.90 mmol), DMM (9.7 ml, 8.321 
g, 109.35 mmol) and TFA (40 ml) to afforded (22.50 g, 
99.43 %) as a yellow powder. Mp = 125 - 127 °C; FTIR 
(solid, cm-1) = 3032, 2942, 1664, 1566, 1462, 1375, 1197; 

1H NMR (500 MHz, CDCl3) δH (ppm) = 6.30 (d, J = 19.3 Hz, 
2H, Ar), 6.12 (d, J = 19.3 Hz, 2H, Ar), 4.98 (d, J = 10.1 Hz, 2H, 
alipha), 4.33 (s, 2H, alipha), 3.57 (d, J = 10.1 Hz, 2H, alipha), 
3.70 (s, 12H, OCH3); 13C NMR (126 MHz, CDCl3) δc (ppm) = 
142.5 (Ar), 131.9(Ar), 130.2(Ar), 124.7(Ar), 120.6(Ar), 

114.8(Ar), 67.1(N-Calipha-N), 56.0(OCH3), 53.7(Ar-Caliph-N), 
17.9(Caliph);  HRMS (EI, m\z): calculated 310.3972, found 
310.3955 (M+). 
 
5- Synthesis of 1,10-Dimethoxy-4,7-dinitro-6H,12H-
5,11-methanodibenzo[b,f](1,5) diazocine (TB-OCH3-
5) 
General procedure was followed using 2-methoxy-5-
nitroaniline (10.00 g, 59.47 mmol), DMM (8.0 ml, 6.789 g, 
89.21 mmol) and TFA (40 ml) to afforded (16.40 g, 74.06 
%) as a yellow powder. Mp = 128 - 130 °C; FTIR (solid, cm-

1) = 3096, 2978, 2943, 1660, 1620, 1577, 1510 (asy. NO2, 
1334 sy. NO2, 1264; 1H NMR (500 MHz, CDCl3) δH (ppm) = 
7.30 (d, J = 22.9 Hz, 2H, Ar), 6.67 (d, J = 22.9 Hz, 2H, Ar), 
4.70 (d, J = 17.2 Hz, 2H, alipha), 4.22 (s, 2H, alipha), 3.89 (d, 
J = 17. 2 Hz, 2H, alipha), 3.70 (s, 12H, OCH3); 13C NMR (126 
MHz, CDCl3) δc (ppm) = 151.7 (Ar), 142.1(Ar), 130.5(Ar), 
118.2(Ar), 115.0(Ar), 111.1(Ar), 67.3(N-Calipha-N), 
56.1(OCH3), 50.5(Ar-Caliph-N); HRMS (EI, m\z): calculated 
372.1064, found 372.1059 (M+). 
Reactions equation of synthesis Tröger base 

 

 
No. of compound R1 R2 R3 R4 Yield (%) Code 

1 H OCH3 H H 87.30 TB-OCH3-1 
 

2 OCH3 H H OCH3 62.72 TB-OCH3-2 
 

3 OCH3 H OCH3 H 62.74 TB-OCH3-3 
 

4 OCH3 H H CH3 99.43 TB-OCH3-4 
 

5 OCH3 H H NO2 74.06 TB-OCH3-5 
 

 
Results and Discussion 
A Tröger base was synthesised according to patent41 with 
modification by reaction of aniline’s derivatives 
dimethoxymethane (DMM) which is a "methylene" source 
in a strongly acidic solvent and catalyst like trifluoroacetic 
acid (TFA). A typical procedure of reaction is one 
equivalent of a pure aromatic amine is mixed with two and 
half equivalents of dimethoxymethane (DMM) and cooled 
to ice temperature. TFA (4-5 ml per gram of amine) is then 
slowly added dropwise over ten minutes. The reaction 
mixture is stirred at room temperature under a constant 
inert atmosphere for 24h. The colour of the solution will 
be change to a brown or black colour. Aqueous ammonium 
hydroxide solution was used to quench the mixture by 
slowly poured the reaction mixture to precipitate the 
afforded product as a solid. The products are filtered and 
washed with water to remove any inorganic waste and 
then hexane. The crude product was exhibited to column 
chromatography (eluent: 8:2 hexane: DCM) and the 
solvents were removed under vacuum. The product as a 
fine powder was collected by filtration and was dried in a 
vacuum oven. 
One of the evidences to form our compounds the FTIR, 
which showing the tertiary amine peak while the primary 

amine peaks is disappear. As well as the Caliph-N peak was 
show near 1200 cm-1, based to some other group like NO2. 
1HNMR refers to Ar-N-CH2 for Tröger bases cyclic at δ ~ 5 
and ~ 4 ppm beside to N-CH2 -N between ~ δ 4.4 ppm. 
13CNMR of Tröger bases refers to CAr -O-CH3 δ 141-152 
ppm, CAr -N at δ 147-141 ppm and Calipha-N at δ ~ 67 and 
50.5-60.7 ppm, beside to methoxy group ~ 56 ppm.  
Structural analysis of the Five Tröger’s base (TB) 
molecules has been achieved using the X-ray diffraction 
(XRD) as shown in Figure (1). The XRD patterns of all 
composites show that the synthesis molecules have 
polycrystalline nanostructure. As shown in the figure, the 
methoxy groups TB-OCH3-1composite has three notable 
peaks at (17.76o, 18.62o and 27.8o) of high intensity of 
preferred plane at (17.76o). The crystallite size (D) of all 
composites has been measured using the formula of 
Scherrer [1].  

D=
𝟎.𝟗 .𝝀

𝛃 𝐜𝐨𝐬 𝜽
                                       (1) 

Where λ is the incident Cu Kα radiation wavelength (λ= 
1.5406 Ǻ), β is the full width at half maximum (FWHM), 
and ϴ is the diffraction angle. The crystallite size value of 
preferred plane of SAK14 is found to be (70.8 nm). The 
addition of NO2 to methoxy groups TB-OCH3-1 led to 
create another group TB-OCH3-5 composite of preferred 
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orientations at (11.03o, 22.09o, and 26.2o) with higher 
intensity at (26.2o). The calculated crystallite size value of 
preferred plane of SAK15 is (51.6 nm). This value indicates 
that the addition also reduces the crystallite size of 
methoxy groups. X-ray diffraction pattern confirms that 
the crystalline structure of TB-OCH3-4 composite has been 
orientated at (44o, 64.34o and 77.5o) and is preferentially 

orientated along crystallographic plane of diffraction angle 
(44o) more than the other planes. The crystallite size value 
of preferred plane of SAK8 is found to be (60.5 nm).    As 
replacing the methoxy group location in TB-OCH3-4, the 

intensity of the preferred orientation at (44o) is reduced 
and the preferred orientation becomes at (64.34o) with 
high intensity to give another composite TB-OCH3-3. With 
another replacement of methoxy group location in TB-
OCH3-4, the preferred orientation at (44o) is continuously 
reduced to lower intensity than at TB-OCH3-2 and get 
another composite SAK10 of the same preferred 
orientation at (64.34o) of TB-OCH3-2. As a result, to 
replacement of methoxy group in TB-OCH3-4, the 
crystallite sizes have been increased to be (63 nm) and 
(75.6 nm) of TB-OCH3-2 and TB-OCH3-3 respectively.

 
 

   

  

 
 

Figure 1. XRD of Tröger’s base 
 
2,9-dimethoxy-6H,12H-5,11-methanodibenzo[b,f](1,5) 
diazocine compound multi crystalline with three top peaks 
and high intensity because the diffraction which contain 
three angles at (17.76o, 18.62o and 27.8o), respectively. 
Both a higher intensity and direction will be angle at 
17.76o, by Scherrer equation (eq.1) to find the crystalline 
volume. The average of crystalline volume of directions 
was 70.8nm. 

𝜏 =  
(𝐾.𝜆)

𝛽𝑐𝑜𝑠𝜃
   ……eq.1 

Where: 
τ: is a size of the ordered (crystalline) domains; K: is a 
dimensionless shape factor; : X-ray wavelength; : is the 

line broadening at half the maximum intensity (FWHM); : 
the Bragg angle. 
When Tröger base has four substituted, so the result will 
be different, A compound 1,10-dimethoxy-4,7-dimethyl-
6H,12H-5,11-methanodibenzo[b,f](1,5)diazocine was 
multi crystalline with three top peak and high intensity at  
angles 44o, 63.34o and 77.5o but the best direction at 44o 
compering with compounds 1,4,7,10-tetramethoxy-
6H,12H-5,11-methanodibenzo[b,f](1,5)diazocine and 
1,3,8,10-teramethoxy-6H,12H-5,11-methanodibenzo 
[b,f](1,5)diazocine because the methyl group was a 
smaller then methoxy group. Furthermore, the change of 
methoxy position of Tröger base led to decreasing of 
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crystalline volume due to change of a higher intensity. 
Wherever the crystalline volume (60.5, 63 and 75.6) nm, 
respectively. A 1,10-dimethoxy-4,7-dinitro-6H,12H-5,11-
methanodibenzo[b,f](1,5) diazocine compound showing a 
multi crystalline was a better direction at 11.03o, 22.09o 
and 26.2o angles but the higher was 26.2o. The Scherrer 
equation prove this compound is a Nano compound which 
the average crystalline volume was 51.6nm. The 
decreasing of average crystalline volume attributed to the 
nitro group. 
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