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INTRODUCTION
Micrometrics is the science and technology of small par-
ticles, that deals with fundamental studies associated with 
characteristics of particles. Particle’s properties are important 
in all pharmaceutical dosage forms, since they are related to 
the physicochemical, pharmacological properties, solubility, 
release, distribution, and bioavailability of the drug. Particle 
Properties such as the particle size, particle size distribution 
governs the manufacturing behaviour of the material in terms 
of their rheology, powder density, powder packing, surface 
area, glossiness. They are affected by environmental factors 
such as humidity, temperature, radiation etc., which subse-
quently impact the stability of the solid, liquid and semisolids 
dosage forms. Therefore, combined knowledge of the technical 
manufacturing methods and the properties of particles such as 
size, surface, shape is mandatory for the development of sta-
ble, safe and effective dosage forms. Hence, the selection of the 
appropriate techniques used for particle characterization rele-
vant to their dosage forms and applications is critical.  There 
are various techniques available at present including imaging 
modalities including light, electronic and advanced microsco-
py such as such as scanning electron, dynamic light scattering, 
and transmission.
The different pharmaceutical dispersed systems are classified 
and characterized by particles. (e.g., molecular dispersions, 
colloidal dispersions and course dispersions).
Colloidal dispersions are too small to be seen in the ordinary 
microscope, whereas the particles of pharmaceutical emul-
sions and suspensions and the fines of powders fall in the range 
of the optical microscope (D'Sa D, et al., 2014; Cocks E, et al., 
2014).
The pharmaceutical systems with size ranges of particles are 
listed in the following table (Verwey EJ, 1947; Lan Y, et al., 
2018) (Table 1).

Applications of micromeritics: 
1. Particle size and distribution has a potential impact on dos-
age rapid solution formulation forms (Chen B, et al., 2012; 
Mengual O, et al., 1999; Daniels R and Knie U, 2007; Rowland 
CM, et al., 2019; Boxall JA, et al., 2012).
2. The particle size is the function of surface area; it has poten-
tial to increase physical chemical and pharmacological proper-
ties of drug molecules. 
3. The pattern of drug release form dosage forms is influenced 
by the Particle size in almost all roots of administration in-
cluding oral, parenteral, rectal, topical etc. (Castellanos A, et 
al., 1999).
4. Physical stability of emulsion and suspension is related to 
the minimum particle Size achieved during processing (Shri-
vastava AR, et al., 2009).
5. In tablet and capsule technology, the control of particle size 
and particle size distribution are extremely important to man-
age good flow properties required for the uniformity of unit 
dose (Raghavan SR, et al., 2000).
6. Physical appearance of ointments, pastes and creams is in-
fluenced by particle size particle size distribution (Becher P, 
2005; Tabibi SE and Rhodes CT, 1996; Ali HS, et al., 2019). 
7. Rate of drying is affected by particle size and particle size 
distribution.
8. Extraction is related to surface area or Particle size.

PARTICLE SIZE AND PARTICLE SIZE DISTRIBUTION 
In heterogenous collections (eg. powder, emulsion, suspension) of 
particles two fundamental properties are important (Ansel HC, et al., 
1995; Beetstra R, et al., 2009; Phan‐Quang GC, et al., 2015).
1. Shape and surface area of individual particles. 
2. Size and number of particles corresponding to each range (particle 
size distribution) (Figure 1).
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Expression of asymmetrical particles  
In order to measure the particle size some parameters are used such as sphere 
size could be expressed in term of diameter, (Equivalent Spherical diameter) 
(Gürbüz S, et al., 2015).
Equivalent spherical diameter can be defined as diameter of sphere having the 
same surface area or volume or diameter (length) (Azarbayjani AF, et al., 2009).
Various equivalent spherical diameters are available (Fishler R, et al., 2018).
1. Surface diameter: Diameter for sphere having the same surface diameter 
area as the particle in question. 
2. Volume diameter: Diameter of sphere having the volume as the particle. 
3. Stokes’s diameter: Diameter of sphere having the same rate of sedimen-
tation as the asymmetric particle (Derksen JJ, 2014; Kessler DP and York JL, 
1970).
4. Projected diameter: The diameter of sphere having surface area similar to 
that of particle when viewed to its most stable plan. 
5. Sieve diameter: Diameter of sphere having the sieving properties similar to 
that of asymmetrical particle (Eum K, et al., 2015) (Figures 2 and 3).

The type of equivalent diameter obtained depends on the method of analysis 
e.g. microscopic technique will give projected diameter, sedimentation tech-
nique will give stokes diameter while sieving technique will give sieve diameter 
and so on. 

Expression of size for polydisperse system 
Collection of particles may not be only asymmetrical but also polydisperse. 
In such situation it is not enough to measure the size of few particles but also 
necessary to known as to how many particles corresponding to each size that 
present in the sample. Therefore, the size range, the number or weight fraction 
corresponding to each size range and the average particle size can be calculated 
and measured to express data Size for Polydisperse System (Senapati PC, et al., 
2016; Pal R, 1996) (Figure 4).

Average particle size
Microscopy is one of the technique available for particle size analysis and de-
termination of particle size distribution. In this method 200-500 particles are 
measured individually for their sizes. The average particle size then calculated 
(Saen-Isara T, et al., 2017; Karg MC, et al., 2019). 

Particle size distribution 
Various methods available for presentation of Particle size distribution data, 
obtained by Particle size analysis (da Rosa Chagas AG, et al., 2017; Reddy MM, 
et al., 2019). 
1. % age frequence distribution curve. Particle plotting size vs frequency
 (Numberer or rate of a particles corresponding to each size range). 
2. Cumulative % frequency distribution. 
Log normal distribution => for pharmaceutical systems show asymmetrical 
type of distribution. The normal probability plot indicate log normal distribu-
tion is plotted (Figure 5).

Table 1: Range of particle size in pharmaceutical disperse system (Verwey EJ, 1947; Lan Y, et al., 2018)

Class Range of particle size micrometers (µm) Microscopic characteristics Examples
Molecular dispersions 1<1 nm Invisible in electron microscope syrup, elixir 

1 nm-0.5 µm Visible in electron microscope Colloidal silver solutions

Coarse dispersions
0.5-10 µm

Visible under microscope
Suspensions

10-50 µm Fine emulsions
50-100 µm Flocculated Suspensions

Figure 1: Frequency distributions of (a) roundness factor and (b) 
aspect ratio for powder sample (Wang H, et al., 2019)

Figure 2: Schematic illustration of multidimensions of a particle 
and its equivalent volume diameter, surface diameter, and sieve di-
ameter (Ali SA and Elhaj BM, 2017)

Figure 3: Particle shapes in different powder sample (Wang H, et 
al., 2018)

Figure 4: Histograms poder sowing different fraction percentages, 
and relative frequency distribution based on the data with three 
density functions (Jenike AW, 1964)

Colloidal 
4

dispersions
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Particle number
It is an important characteristic in particle technology (Miao Y, et al., 2019; 
Cho GC, et al., 2007). It may be defined as number of particles per unit weight 
of material (generally 1 gm) (Figure 6). This could be obtained as follows:

Assuming that the particle is spherical, the volume of particle is obtained by the 
equation, we know density=mass/volume 
Thus mass (weight) of single particle=density × volume

Determination of particle size 
The particle size may be defined in terms of dimensions and shape 38, of parti-
cle. The particle size may be determined by direct observation of the diameter 
or by calculating the diameter from particle volume or its surface area.
Large number of methods are available for determining particle size. However, 
those most frequently used in pharmacy and based on certain principle are 
shown in the table (Table 2).
Table 2: Methods used for determining powder particle size 40

Method Range applicable
1 Optical microscopy 0.2-100 μm
2 Electron 0.005-1 μm
3 Sieving above 33 μm
4 Sedimentation and elutriation 2-50 μm
5 Coulter counters 1-100 μm
6 Ultracentrifuge 0.007-1 μm

It is possible to determine particle size from the knowledge of surface area 
(specific surface), 2- methods are available to determine surface area (Figure 7) 
(Jensen RP, et al., 1999; Lu G, et al., 2015): 

1. Adsorption (0.005-10 µm). 
2. Air permeability (5-100 µm).
In principle all methods would yield the same results if the particles were uni-
form in size, spherical, smooth and non –porous and of equal density (Figure 
8). 

Microscopy, sieving and sedimentation are the most widely methdos used in 
pharmaceutical particle. 
The choice of method of Particle size analysis depends on: 
1. Particle size and size range present in sample. 
2. The purpose for which the data (Particle size) is required. 

Optical microscopy 
Suitability:  Most common technique employed in particle size analysis. Suit-
able for Particle size ranging between 0.2-100 µm. there are various techniques 
for image analysis such as Scanning electron microscope, Stereomicroscopy 
and SEM image analysis (Shokri-Kuehni SM, et al., 2018).
Methodology: (Lee JH, et al., 2016) Sample of emulsion or suspension, diluted 
or undiluted is placed on a slide or ruled cell and viewed through a microscope, 
by using a micrometer to measure the size of particles. The field can be project-
ed on to a screen or a photograph can be taken of the slide and projected on a 
screen where the particle is measured more easily: particle distribution could 
be also studied (Figure 9).

Figure 5: Cumulative % frequency distribution (Ha WN, et al., 
2016)

Figure 7: Computing D-values from Optical Particle Size Measure-
ment Systems (Meng Q, et al., 2018)

Figure 6: Particles weight variation in a powder sample (Boyce CM, 
et al., 2017)

Figure 8: Magnitudes of particle sizes in gas-solid systems (Sheikh 
B, Pak A, 2015) 

Figure 9: Digital image of flour particles obtained after processing 
from stereomicroscope (Probst C, et al., 2017; Makan AC, et al., 
2016)
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Advantages: 
1. Most common technique employed in Particle size analysis (Cooper JT, et 
al., 2013). 
2. Suitable for Particle size ranging between 0.2-100 µm. 
3. Microscopic observation of a sample should always carry out even if other 
method of analysis is employed in order to know two aspects a. if there is a 
tendency to aggregation or agglomeration. 
4. To confirm that the material is composed of single component. 
Disadvantages:  
1. The diameter is only obtained from only two dimensions of the particle 
(length+breadth), no estimation of the thickness (Johnson TF, et al., 2017). 
2. This method is suitable for uniform spherical shape particles. For powder 
contains irregular, non-spherical shape tim brell microscope (double image 
microscopy) is used. 
3. The method is slow and tedious because large number of particles must be 
counted (300-500 particles) in order to obtained a good estimation. 

Electronic microscopy
Electronic counting devices are available which directly includes the Particle 
size measurement. 

Sieving
Sieving or sifting is the process by which different grades of powders are sep-
arated from each other. Sieving method used for measuring Particle size and 
Particle size distribution. It has many benefits including: being fast, simple and 
inexpensive (Prescott JK and Barnum RA, 2000).
Suitability: This method is basically meant for grading coarse powders. How-
ever, if precautions are taken the method could be used for screening of parti-
cles as smaller as 44 µm. 
Nowadays electro-form sieves with size 5-30 µm are available as a result sieving 
could be used to determine the Particle size ranging from 5-30 µm. 
Methodology: Series of sieves are arranged with at least 4-5 sieves with course 
sieve being kept at top. Suitable amount of material is accurately weighted kept 
on top sieve (Zheng J and Hryciw RD, 2016). Whole system is kept on sieve 
shaker and shaken at optimum intensity for predetermined time. At the end of 
this period, material obtained in each sieve is carefully removed and weighed 
and each of each fraction is assigned a particle size by one of the two methods. 
In one method the material is assigned to the particle size of the size of opening 
of the sieve through which it has passed or in which it has retained. In recent 
years material retained on specific sieve that is assigned a size which is either 
arithmetic or geometric mean of two successive sieves i.e. the sieve through 
which material has passed and the sieve on which material is retained. 
Advantages: 
1. This method is easy, simple (Kaerger JS, et al., 2004). 
2. Inexpensive
3. Rapid. 
Disadvantages: It is difficult to obtain correct results because of the following 
reasons: 
1. Overloading of sieves may result in errors, if insufficient time for shaking 
allowed may not give correct results (Cheong FC, et al., 2011). 
2. Due to electrostatic attraction between particles the aggregates may be 
formed which will not pass through he sieve. 
3. Due to humidity, the hygroscopic powders may lead to aggregation (Ali SA, 
et al., 2016). 
4. Particle shape has a great influence to pass the mesh. The particles with 
spherical shape pass the mesh without any difficulty whereas plate like or long 
fibrous particles have to be titled into an upright position to pass the mesh. 

5. When the material is agitated with high intensity, attribution of size reduc-
tion of granular pharmaceutical material generally takes place. Therefore, it is 
necessary that sieving must be carried out at intensity and for the time that is 
sufficient to a chieve sieving equilibrium without change in particle size. 

Sedimentation (Pipette method): Using Andreason apparatus or 
pipette:
• This is the most reliable method for the analysis of fine powders in coarse 
dispersions like emulsions and suspensions. 
• This method is based on the measurement of the rate at which particles of 
powder settle out from a liquid in which they have been dispersed (Figure 10).

Coulter counter (conducting method) 
This method based on volume measurement that has been first been designed 
by coulter counter corporation USA. Electrical resistance will be proportional 
to the volume of particle (Cossu A, et al., 2015). 
Advantages:
• This method can count as count as many as 4000 particles/second. As a result, 
the particle size analysis could be complete within few minutes (Rapid meth-
od) (Maheshwari R, et al., 2016). 
• The counting is by electronic method, so the method is most accurate. 
• The result is expressed in terms of particle volume from which it is a simple 
matter to calculate the diameter of the sphere of equivalent volume. 
• The sphere of equivalent volume is defined as the sphericity descriptor in the 
circumscribing sphere.
• The instrument can operate with particles between 0.5-1000 micrometers. 
Disadvantages:
• It is not possible to have the knowledge of shape because the Particle size 
analysis is based on volume measurement (Kim W, et al., 2018). 
• The material must be suspended in an electrolytic liquid but non-aqueous 
electrolytes are available for water soluble materials. 

Elutriation
It is a procedure in which the fluid moves in a direction opposite to the sedi-
mentation movement (Hettler EN, et al., 2011). 

PARTICLE SHAPE AND SURFACE AREA 
Knowledge of particle shape and surface area is extremely important in 
particle technology (Zheng L, et al., 2019). For example, Particle shape 
can influence: 

Flow properties (Tablet technology) 
• Packing properties (Capsule) (Ye C, et al., 2019; Bouwman AM, et 
al., 2004). 
• Surface area (to some extent) (McCarthy CA, et al., 2018) (Figure 11). 

Particle shape 
A sphere has minimum surface, it has a definite volume (Waschke J, et 
al., 2019). More asymmetrical the particle greater will be the surface 
area for unit volume sphere could be characterized in terms of diam-
eter, as a result it is relatively easier to determine the surface are and 
volume of Spherical Particles (SP). 

Figure 10: Using Andreason apparatus (Sansone EB, Civic TM, 
1975) 
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Volume of particle (VO)
From equations it clear that the surface area is proportional to the 
square of diameter and volume is proportional to cube of diameter (Liu 
X, et al., 2019). 
The particle becomes increasingly as asymmetrical, it is more and dif-
ficult to assign meaningful diameter to the particle. Hence measuring 
of equivalent spherical diameter is possible by microscopic method to 
compute surface area. 
Projected diameter (dp) is frequently available and possible to measure 
The more asymmetric the particle the more the value of shape factor>6. 

Specific surface
May be defined as surface area occupied by unit volume (Sv) or per 
unit weight (Sw). 
Surface area is influence mainly by three factors (Phan‐Quang GC, et 
al., 2015)
• Particle size 
• Amount of sample 
• Shape. 
Surface area (Oh JM, et al., 2019) based on amount of sample, but does 
not have any influence on physico-chemical properties related to the 
surface area and hence in order to compare the surface area of different 
samples of material it is appropriate to keep the weight or amount of 
material constant. Hence, specific surface is the term that is commonly 
used to evaluate the surface area. 
Specific area (Ianoş R, et al., 2017) is a combined function of surface 
area and volume, as a result the meaningful diameter combinig both 
the aspects will be surface volume diameter, which could be obtained 
by surface area per unit weight. 

Measurement of surface area 
Available methods may be classified into two groups (Giri SD, Sarkar 
A, 2018)
• Indirect methods 
• Direct methods. 
It is possible to compute surface area indirectly by the methods avail-
able for particle size analysis and hence indirect methods (El-Haj BM, 
et al., 2007) include: 
• Microscopy (Hichri Y, et al., 2019)
• Sedimentation
• Coulter counter 
• Seiving. 
Direct methods: Liquid solute that to form a monolayer is a direct 
function of the surface are of the sample (Ali U, et al., 2019). 
• Adsorption: The amount of gas or adsorbed on to the sample of pow-
der (Madani SH, et al., 2018).
• Air-permeability: Depends on the rate at which a gas or liquid per-
meates a bed of powder is relted to the surface are exposed to perma-

nent (Nosko M, et al., 2019). 

DERIVED PROPERTIES OF POWDERS 
There are two fundamental properties for collection of particles i.e. 
Particle size and surface area (Yohannes B, et al., 2018). There are also 
different derived properties that are based upon the two above funda-
mental properties. Since they depend on these fundamental properties, 
they are called derived properties (Shah UV, et al., 2015; Suliman RS, 
et al., 2017). 
Some of these derived properties are particle dissolution and dissolu-
tion rate. 
Other derived properties are:
• Densities (Chou HT, et al., 2014; Liao CC, 2018)
• Porosity (Härtl J and Ooi JY, 2008)
• Packing arrangement (Chou HT, et al., 2014)
• Flow properties (Jange CG, Ambrose RK, 2019; Goh HP, et al., 2018)

Porosity
when a powder (eg. zinc oxide) is filled into graduted measuring cylin-
der the volume occupied by the powder is known as the bulk volume 
(Vb) (Holm R, et al., 2016). The bulk volume of the powder consists 
of the (true volume of the solid particles plus the volume of the spaces 
between the particles Vp (internal pores or capillary spec. The void vol-
ume indicates the volume of the spaces, 
Thus, Vb=Vp + V 
The porosity, (Pawar P, et al., 2016) or Void (E) for the powder may be 
defined as the ratio of the void volume to the bulk volume. In other 
words, void is defined as the fraction of Vb occupied by inter-particu-
late space. Porosity or void is expressed by % age. 

Packing arrangements
Ideal packing arrangements is to be taken as uniform size sphere (Koe-
bernick N, et al., 2019). Uniform size sphere may take one of ideal 
packings: 
• Closest (Rhombohedral).
• Most open or looset (cubic). 
In practise (Garg V, et al., 2018), Porosity in closest packing is 26% and 
in loosest packng it is 48%.   Also, the particles are neither spherical nor 
of same size. As a result it is assumed that they will undergo packing n 
between these two ideal arrangements. Thus, it is expected that prac-
tical powders should have porosity ranging from 26-48%. Practically it 
was observed that the porosity varies from 30-50%. 
However, if the particle size distribution is used, small particles will 
fill the gap between large particles, as a result porosity may fall below 
theoratical minimum of 26%. If the particles have tendency to agglom-
eration, the initial between the particles will lead to much more looser 
packing, just like seen in flocculated a porosity may exceed theoretcial 
maximum of 48% it may be concluded that practical powders may have 
any degree of porosity. 

Densities of particles
On one hand particles may be smooth and on other hand they may be 
rough and spongy. Therefore, it is necessary that care should be taken 
in pointing out the densities (Abdullah EC and Geldart D, 1999; Youd 
TL, 1973). Density may universally be defined as mass per unit volume. 
Mass remains unchanged, volume may change depending on internal 
pores or inter-particulate spaces (voids) are taken into an account. 
There are 3 types densities, (Wong AC, et al., 2000): 
• True density 
• Granule density 

Figure 11: Particle size vs specific surface area for synthesized pow-
der sample (Ali H, et al., 2016)
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• Bulk density. 
True density: It may be defined as density of particle itself, exclusive 
of internal pores of the size greater than molecular atomic dimensions 
present in crystal lattices (Abdullah EC and Geldart D, 1999). Meth-
ods, available for measuring the true density are: 
• Helium displacemnent
• Liquid displacement 
• High pressure compression 
• True density=m/Vp 
Granule density: May be defined as density of particles including in-
ternal pores of the size smaller than 10 m (Santomaso A, et al., 2003). 
Bulk density: It is a relative density type used for characterization of 
powder for quality control purposes (Cho G, et al., 2006).
Measures of demones: Best method for the measurement of true dens-
ities is Helium [He] displacement method. He is gas of choice because 
ti can enter into internal pores, at the same time it is not adsorbed on 
the particles. Density is measured by helium (He) Densitometer (El-
Haj B, et al., 2008). 
True density is available in literature are measured by liquid. Displace-
ment method. Density obtained by this method may be differ from that 
obtained by Helium. He displacement method, depending on ability 
of liquid to penetrate into the internal pores. Liquid should be chosen 
properly as: 
• Material should be insoluble in selected liquid. 
• Material should be heavier. 
• It should not inter-act with material. 
• Liquid should preprably wet the material.
True density determination: Can be obtained by 2 methods (Stranz-
inger S, et al., 2019)
• Gas pycnometer helium true density measurement
• Measuring cylinder 
Density may be defined as=wt/volume of liquid dispalced by same wt., 
while
Granule density: Granule density is obtained by mercury displace-
ment method mercury inters into spaces between the particles. Dis-
placement will be proportional to the volume of solid including the 
internal pores. The procedure is the same as that of liquid displacement 
method. 
Bulk density: It is obtained by 3 tap methods according to USP pro-
cedure (cylinder method). 
Importance of bulk density: Bulk density plays an important role in 
formulation of dosae form, it is more important than true density e.g. 
• Bulk density affects tablet porosity=>tablet hardness, disintegra-
tion time which is one of the important quality control parameters of 
tablets. Thus, disintegration time influence absorption in G.I.T and 
physiological ability of drug. 
• Bulk density may be used as test check for the uniformity of bulk 
materials. 
• To determine the appropriate size of the container, mixing apparatus, 
hard gelatin capsule shape. 

Factors influencing bulk density:
1. Particle size: Decrease particle size increases porosity and hence de-
crease bulk density (Meier C, et al., 2019). 
(Vb increases) Vb=Vp + v 

2. Particle size distribution: if the particle size distribution is wide 
small particles fill in the gaps between large particles. This will lead to 
heavy powder or the powders with high bulk density. 
3. Particle shape: Any deviation from spherical shape will lead to a ten-
dency towards loose packing resulting in light powders or the powders 
with low bulk density. 
4. Tendency towards agglumeration: I the particles during packing 
undergo initial particle-particle bridging large space are left in the 
powdered bed resulting in powders with low bulk density. 
Porosities: There are many porositis as the number of densities (Saw 
HY, et al., 2015). 
• Intraparticle porosities as the number of densities. 
• Interspace (E intraparticle) 
• Total porosity is Interaporosity+Inter space. 
Is defined as fraction of granule volume occupied by internal pores. 
Bulkiness: (Etti CJ, et al., 2016) It is reciprocal of specific bulk volume. 
it is important in determining the size of container and the selection o 
of hard gelatin capsules. 

Flow properties
Factor influencing flow properties of powders: 
• Particle size 
• Particle size distribution (Cheong FC, et al., 2011; Härtl J, Ooi JY, 
2008; Johnston LJ, et al., 2009). 
• presence of fine particles 
• presence of moisture 
• particle shape 
• porosity and density 
• surface texture. 
Measurement of flow properties: It is measured in terms of angle of 
repose which is defined as the maximum angle between the surface of 
a pile and horizontal plane. Angle of repose is inverse function of flow 
properties (Nelson E, 1955; Ali I, et al., 2020; Yang FG, et al., 2009; Cas-
tellanos A, et al., 1999; Frączek J, et al., 2007; Zou RP and Yu AB, 1996).
It is named as static and dynamic according to the method of meas-
urement, where the static by a pile and plane, and the other by a rotat-
ing cylinder as shown in the figure. Different methods are available to 
measure the Flowability based on the shear characteristics of a powder 
such as parallel plate shear tester, as figure. The most common reliable 
one is (2) funnel method. Powders can be classified in terms of   their 
flowability using the angle of repose, as shown in the table (Figures 12 
and 13) (Table 3).

Figure 12: Angle of repose: Static and dynamic (Lee J and Herr-
mann HJ, 1993; Holsapple KA, 2013; Chik Z, Vallejo LE, 2005)
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Table 3: Classification of powders as per their flowabilities (Salehi 
H, et al., 2017; Yamane K, et al., 1995; Fowler RT and Wyatt FA, 
1960)

Description Angle of repose
Very free flowing 25-30º

Free flowing 30-38º
Fair to passable flow 38-45º

Cohesive 45-55º
Very cohesive >55º

CONCLUSION
Overall, our information supports the speculation that HIV disease 
causes cellular degradation in the lungs and proves that this impact 
is independent of smoking status. Further investigation should focus 
on understanding the organic components of how HIV contamination 
can accelerate the cycle of lung carcinogenesis. Given the large number 
of HIV-infected people who reported heavy smoking and who have 
smoked for longer periods of time because of their antiretroviral ther-
apy, cellular breakdown in the lungs is likely to become an increas-
ing problem for this population. A better understanding of the risk of 
smoking-related cell degradation in the lungs in HIV-infected individ-
uals will help guide smoking cessation and improve interventions to 
decrease the effect of smoking. Close observation of cell degradation 
in the lungs of HIV-infected individuals and sharing of HIV-related in-
formation is warranted to study the risk of lung cell degradation related 
to markers of HIV infection and delayed use of HAART.
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